
HAL Id: hal-04193779
https://hal.science/hal-04193779v2

Submitted on 16 May 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guidelines for Fortran Programming on Heterogeneous
Architectures
Kazem Ardaneh

To cite this version:
Kazem Ardaneh. Guidelines for Fortran Programming on Heterogeneous Architectures. Institut
Pierre-Simon-Laplace. 2023. �hal-04193779v2�

https://hal.science/hal-04193779v2
https://hal.archives-ouvertes.fr

Guidelines for Fortran Programming on Heterogeneous
Architectures

Kazem Ardaneh

CMC/IPSL, Sorbonne Université - Campus Pierre et Marie Curie

May 16, 2025

1

Guidelines for Fortran Programming on Heterogeneous Architectures 2

Contents
1 Heterogeneous architectures 1

1.1 NVIDIA Compiler . 1
1.2 Compiler options . 1

1.2.1 Debugging . 1
1.2.2 Optimization . 2
1.2.3 Vectorization . 2

2 Optimization 4
2.1 Register spilling . 4
2.2 Factorization . 4
2.3 Loop ordering . 5

2.3.1 Array reductions . 7
2.4 Loop expressing . 9

2.4.1 Initializing/Copying Arrays . 13
2.4.2 Loop fusion . 15

2.5 Loop tiling . 18
2.6 Repeated array accesses . 21

3 Vectorization/Parallelization 21
3.1 I/O . 22
3.2 Procedures . 23
3.3 Function . 25
3.4 Indirect addressing . 29
3.5 IFs . 30
3.6 Dependence . 31

4 Management of memory 32
4.1 Dynamic memory allocation . 32
4.2 Pointers . 33

5 Errors in floating-point computations 34

References 35

Guidelines for Fortran Programming on Heterogeneous Architectures 1

1 Heterogeneous architectures
Heterogeneous architecture refers to a computing system or platform that employs different types of
hardware components, such as processors and accelerator. These components are designed to work
together efficiently, each contributing its strengths to achieve better overall performance, energy ef-
ficiency, or other desired characteristics. Supercomputers often utilize heterogeneous architectures
to handle complex simulations, scientific calculations, and data analysis tasks. GPUs are frequently
employed alongside traditional CPUs to accelerate computationally intensive workloads.

GPUs and CPUs have different strengths and are optimized for different types of tasks. CPUs are
well-suited for tasks that require strong single-threaded performance and general-purpose computing,
while GPUs excel at parallel processing tasks involving large datasets, such as graphics rendering,
scientific simulations, and deep learning. In many applications, a combination of both CPUs and
GPUs can provide a balanced approach to achieve optimal performance and efficiency.

1.1 NVIDIA Compiler
The NVIDIA compiler is a suite of compilers and tools designed for HPC and scientific computing. It
is commonly used for compiling and optimizing code for parallel architectures, including CPUs and
GPUs. NVIDIA compilers are known for their focus on performance optimization, parallelization, and
vectorization to make the most of modern hardware capabilities. Key distinct features of the NVIDIA
compiler are:

• Heterogeneous Computing: well-suited for heterogeneous computing environments where both
CPUs and GPUs are utilized to accelerate computations,

• GPU Acceleration: the ability to compile CPU and GPU code within the same program, enabling
seamless integration of parallel processing on GPUs,

• Directive-Based Parallelization: support OpenACC, a directive-based approach to parallel pro-
gramming. Developers can annotate their code with directives to guide the compiler’s paral-
lelization and optimization efforts,

• Profiling and Debugging: tools for profiling and debugging parallel code which help to identify
performance bottlenecks, analyze memory usage, and locate errors in parallel programs.

1.2 Compiler options
1.2.1 Debugging

Most modern compilers come equipped with a range of debugging options and tools that we can use to
identify and resolve issues in our codes. Here are some common debugging options we might find in a
compiler:

Table 1: Debuging options

Option Description
-O0 Hinder any optimizations

-C/-Mbounds Generate code to check array bounds
-g Generate information for debugger + [-O0]

-Ktrap=fp Controls on the floating-point exceptions
-Kieee Floating-point operations with the IEEE 754 standard

-traceback Add debug information for runtime traceback
-Mchkptr Check for NULL pointers

-Mchkfpstk Check the consistency of floating point stack at procedures call
-Mdepchk Check dependence relations for vector or parallel code
-Mchkstk Check for sufficient stack space upon subprogram entry

-Minfo Print compiler feedback messages

Guidelines for Fortran Programming on Heterogeneous Architectures 2

1.2.2 Optimization

Optimization compiler options are settings that we can apply to our code during the compilation pro-
cess to enable various levels of optimization. These options instruct the compiler to perform trans-
formations on our code in order to improve its performance, reduce its memory usage, and make it
execute more efficiently. However, optimization can sometimes introduce complexities and potential
trade-offs, so it’s important to understand the options available and their effects. Here are some com-
mon optimization compiler options:

Table 2: Optimization control.

Level Description
-O0 No optimization, Compiler generates a basic block for each language statement.
-O1 Scheduling of basic blocks + Register allocation
-O Scalar optimization + Induction recognition + Loop invariant motion. No SIMD vectorization

-O2 [-O1] + [-O] + SIMD vectorization + Cache alignment + Partial redundancy elimination
-O3 [-O1] + [-O2] + Aggressive hoisting + Scalar replacement optimizations
-O4 [-O1] + [-O2] + [-O3] + hoisting of guarded invariant floating point expressions

1.2.3 Vectorization

Vectorization is a technique used by compilers to optimize code by transforming scalar operations
into vectorial operations. This takes advantage of the capabilities of modern CPUs and architectures
that support Single Instruction Multiple Data (SIMD) instructions. Vectorization can significantly im-
prove the performance of certain types of computations, especially those involving large datasets and
repetitive calculations. Compiler options related to vectorization instruct the compiler to automati-
cally identify and apply vectorization optimizations to our code. Here are some common vectorization
compiler options:

Table 3: Vectorization control.

Option Description
-Mvect=[no]altcode Enable/disable alternate code generation for vectorization
-Mvect=cachesize:n Assume a cache size of n when performing cache tiling

-Mvect=[no]fuse Enable/disable loop fusion
-Mvect=partial Generate partial vectorization

-Mvect=prefetch Generate prefetch instructions
-Mvect=[no]sse Enable/disable vectorize the loops with SSE/SSE2 + prefetch instructions
-Mvect=simd:n Vectorize using SIMD either 128/256/512 bits wide

-Mvect=[no]assoc Enable/disable associativity conversions
-Mvect=[no]tile Enable/disable loop tiling

The -fast compiler’s option is often used in various compilers to enable a combination of optimization
flags that collectively aim to produce highly optimized and fast-running code. Here are some aspects
to be aware of when using the -fast compiler option:

Table 4: -fast control.

Option Description
-O2 See Table2

-Mvect=simd See Table3
-Munroll=c:1 Unroll loops with a loop count of 1
-Mautoinline Enable automatic function inlining

-Mflushz Set SSE to flush-to-zero mode if a floating-point underflow occurs
-Mlre Loop-carried redundancy elimination

-Mcache_align Align large objects on cache-line boundaries

Guidelines for Fortran Programming on Heterogeneous Architectures 3

The Table 5 provides a detailed comparison of debug and production (Prod) compilation flags across
three widely used Fortran compilers: GNU (gfortran), Intel (ifort), and NVIDIA (nvfortran).
Under the Debug section, all compilers support the generation of debugging symbols using the -g
flag, while GNU additionally supports verbose warning messages with -Wall. Profiling via Gprof
is uniformly enabled across all compilers using the -pg flag. Bounds checking and null pointer de-
referencing checks are supported in all compilers but with different syntax: GNU uses flags like
-fbounds-check and -fcheck=pointer, Intel uses -check bounds and -check pointers, and
NVIDIA uses -Mbounds and -Mchkptr. Stack space verification and floating-point exception trap-
ping are also available, with compiler-specific flags such as -fstack-check (GNU), -check stack
(Intel), and -Mchkstk (NVIDIA). IEEE 754 compliance is supported via strict floating-point flags like
-fp-model=strict (Intel) or -Kieee (NVIDIA), and all compilers allow disabling optimizations with
-O0 and enable runtime error backtracing with -fbacktrace or -traceback. In the Prod section,
optimization is generally enabled at level -O2. IEEE standard behavior can be enforced more thor-
oughly in GNU using extended flags like -frounding-math and -fsignaling-nans, whereas Intel
and NVIDIA maintain strict behavior using -fp-model=strict and -Kieee, respectively. All compil-
ers offer options to generate optimization reports (-fopt-info-all, -qopt-report, -Minfo=all),
perform aggressive inlining of functions, generate position-independent code using -fpic, and apply
advanced loop transformations such as fusion, tiling, and unrolling. Finally, the table includes op-
tions for aligning large objects to cache-line boundaries and setting architecture-specific tuning flags
(-march, -ax, or -tp), making it a valuable reference for developers seeking consistent debugging and
optimization strategies across different compilation environments.

Compiler GNU (gfortran) Intel (ifort) NVIDIA (nvfortran)

Debug
Debug information -Wall -g -g -g or -gopt
Gprof profiling -pg -pg -pg

Bounds check -fbounds-check or
-fcheck=bounds or all

-check bounds or -check all -C or -Mbounds

Check for unintended de-
referencing of NULL pointers

-fcheck=pointer or
-fcheck-pointer-bounds

-check pointers or -check
all

-Mchkptr

Check the stack for available space
upon entry

-fstack-check or -fcheck=mem -check stack
-fp-stack-check

-Mchkstk

Trap floating-point exceptions -ffpe-trap=invalid,zero,overflow-fpe0 -ftrapuv -Ktrap=fp (inv,divz,ovf)

IEEE 754 floating-point standard -fprotect-parens
-fno-unsafe-math-optimizations

-fp-model=strict -Kieee

No optimizations -O0 -O0 -O0

Backtrace on errors -fbacktrace -traceback -traceback

Prod
Optimization -O2 -O2 -O2

IEEE 754 floating-point standard -fprotect-parens
-fno-unsafe-math-optimizations
-frounding-math
-fsignaling-nans

-fp-model=strict -Kieee

Optimization report -fopt-info-all -qopt-report=2 or 3 -Minfo=all

Inline all functions -finline or
-finline-functions or
-fwhole-program

-finline-functions -ip -ipo -Minline -Mextract or
-Mautoinline

Generate position-independent
code

-fpic -fpic -fpic/-KPIC/-Kpic

Enable loop fusion -ftree-loop-optimize Included in -O2 -Mvect=fuse

Enable loop tiling -ftree-loop-distribution Included in -O2 -Mvect=tile

Align large objects on cache-line
boundaries

-falign-commons -qopt-mem-layout-trans=2 -Mcache_align

Enable loop unrolling -funroll-loops -unroll or -funroll-loops -Munroll

Sets the target architecture -mtune={arch} -march={arch}
-m{arch}

-ax{arch} or -x{arch} or
-m{arch}

-tp={arch}

Table 5: Compiler Options Comparison

Guidelines for Fortran Programming on Heterogeneous Architectures 4

2 Optimization
2.1 Register spilling
Register spilling refers to the situation in which a compiler cannot allocate all the variables and values
that need to be stored in the limited number of available CPU registers. As a result, some of these
variables or values need to be "spilled" or stored in memory locations (usually on the stack) instead of
being kept in registers.

To reduce register spilling, minimize the scope of variables and the distance between usage.

! - -
x = a + b * c + d / e
! --> Many lines that do not use x
y = x + other_stuff
! + +
! --> Many lines that do not use x
x = a + b * c + d / e
y = x + other_stuff

Minimize the scope of variables and the gap between their utilization.

Register spilling

2.2 Factorization
The speed of program execution for numerical solutions is predominantly influenced by the quantity
of function (subroutine) calls and arithmetic operations conducted within the program. Consequently,
preference is given to algorithms demanding fewer function calls and arithmetic operations. For in-
stance, when tasked with evaluating the value of a polynomial, such as:

p4(x) = a1x
4 + a2x

3 + a3x
2 + a4x+ a5

It is more efficient to utilize a factorized structure (as shown below) than to employ the original form:

p4f(x) = (((a1x+ a2)x+ a3)x+ a4)x+ a5

It’s worth noting that the factorized multiplication in p4f(x) involves 4 multiplications, whereas the
original form p4(x) requires 4 + 3 + 2 + 1 = 9 multiplications. This concept is illustrated through the
following example, where a polynomial

∑N−1
i=0 aix

i is computed using both methods. The performance
difference is evident, with the factorized multiplication approach being two times faster.

SUBROUTINE nonestedm()
PARAMETER (n = 10**8 + 1, x = 1.)
DIMENSION a(n), xi(0:n-1)
DO k = 1, n

a(k) = k
ENDDO
DO k = n-1, 0, -1

xi(k) = x**k
ENDDO
p = SUM(a(:)*xi(:))
WRITE(*,11) p

11 FORMAT(’SUM =’,2X,ES19.12)
ENDSUBROUTINE nonestedm
SUBROUTINE onnestedm()

PARAMETER (n = 10**8 + 1, x = 1.)
DIMENSION a(n), xi(0:n-1)

Guidelines for Fortran Programming on Heterogeneous Architectures 5

DO k = 1, n
a(k) = k

ENDDO
p = a(1)
DO k = 2, n

p = p * x + a(k)
ENDDO
WRITE(*,11) p

11 FORMAT(’SUM =’,2X,ES19.12)
ENDSUBROUTINE onnestedm

% cumulative self self total
time seconds seconds calls ms/call ms/call name
71.03 0.17 0.17 1 170.48 170.48 errors_nonestedm_
29.25 0.24 0.07 1 70.20 70.20 errors_onnestedm_
0.00 0.24 0.00 1 0.00 240.67 MAIN_

Efficient computation is achieved by consistently factoring common expressions.

Factorization

2.3 Loop ordering
Loop order pertains to the spatial locality within memory. Spatial locality implies that instructions
located near the recently executed instruction have a higher probability of being executed. It involves
utilizing data instructions that are closely situated to storage locations.

For instance, consider the following Fortran code. The arrangement of array elements in memory
follows the order in which the left-hand side dimension grows. Consequently, x(i + 1, j), y(i + 1, j),
and z(i + 1, j) are stored next to x(i, j), y(i, j), and z(i, j), respectively. This arrangement enables the
compiler to anticipate their usage in the subsequent loop iteration and prefetch them from memory to
the cache.

In the second part of the code, we have reversed the sequence of loops. In this scenario, between
two consecutive iterations of the inner loops, the variables x(i, j+1), y(i, j+1), and z(i, j+1) are spaced
apart by n variables from x(i, j), y(i, j), and z(i, j). Attempting to prefetch data from these arrays is
more likely to result in cache misses.

In the given example, the version with the correct loop ordering exhibits performance that is nearly
ten times faster than the version with the reversed loop order. This highlights the significant impact
that loop ordering can have on computational efficiency.

24 SUBROUTINE conti(x, y, z, n, m)
25 DIMENSION z(n,m), y(n,m), x(n,m)
26 #IFDEF _OpenACC
27 #IF defined LOO
28 !$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT)
29 #ELIF defined KER
30 !$ACC KERNELS DEFAULT(PRESENT)
31 #ENDIF
32 #ENDIF
33 DO j = 1, m
34 DO i = 1, n
35 x(i,j) = x(i,j) + y(i,j) * z(i,j)
36 ENDDO
37 ENDDO
38 #IFDEF _OpenACC
39 #IF defined KER
40 !$ACC END KERNELS

Guidelines for Fortran Programming on Heterogeneous Architectures 6

41 #ENDIF
42 #ENDIF
43 ENDSUBROUTINE conti
44
45 SUBROUTINE nonconti(x, y, z, n, m)
46 DIMENSION z(n,m), y(n,m), x(n,m)
47 #IFDEF _OpenACC
48 #IF defined LOO
49 !$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT)
50 #ELIF defined KER
51 !$ACC KERNELS DEFAULT(PRESENT)
52 #ENDIF
53 #ENDIF
54 DO i = 1, n
55 DO j = 1, m
56 x(i,j) = x(i,j) + y(i,j) * z(i,j)
57 ENDDO
58 ENDDO
59 #IFDEF _OpenACC
60 #IF defined KER
61 !$ACC END KERNELS
62 #ENDIF
63 #ENDIF
64 ENDSUBROUTINE nonconti

Running the code without applying any optimization options results in a significant tenfold de-
crease in the performance of the loop.

% cumulative self self total
time seconds seconds calls s/call s/call name
68.72 6.68 6.68 1 6.68 6.68 locality_nonconti_
28.05 9.41 2.73 1 2.73 9.78 locality_locality_
3.83 9.78 0.37 1 0.37 0.37 locality_conti_
0.00 9.78 0.00 1 0.00 9.78 MAIN_

Upon incorporating the compiler’s optimization option, the compiler generates the subsequent mes-
sage concerning the nonconti routine. It appears that the compiler has inverted the sequence of loops,
resulting in nearly identical execution times for the two loops.

nonconti:
54, Loop interchange produces reordered loop nest: 55,54

% cumulative self self total
time seconds seconds calls ms/call ms/call name
51.38 0.26 0.26 1 262.03 262.03 locality_nonconti_
49.40 0.51 0.25 1 251.95 251.95 locality_conti_
0.00 0.51 0.00 1 0.00 0.00 MAIN_
0.00 0.51 0.00 1 0.00 251.95 locality_locality_

Is cache alignment always rectifiable by the compiler? To examine this scenario, we will assess
execution on a GPU utilizing the OpenACC protocol. By employing the "PARALLEL LOOP" construct
in conjunction with the "COLLAPSE" clause, which combines the two nested loops into a singular loop,
we will observe the subsequent message from the compiler:

conti:
28, Generating Tesla code

33, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
34, ! blockidx%x threadidx%x collapsed

nonconti:
49, Generating Tesla code

Guidelines for Fortran Programming on Heterogeneous Architectures 7

54, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
55, ! blockidx%x threadidx%x collapsed

Time(%) Total Time (ns) Name
0 ------- --------------- ------------------------
1 92.8 78,561,967 locality_nonconti_49_gpu
2 7.2 6,116,692 locality_conti_28_gpu

An alternative approach could involve using the "KERNELS" construct in lieu of the "PARALLEL"
construct. The "KERNELS" construct affords the compiler maximum flexibility to parallelize and op-
timize the code according to the characteristics of the target accelerator. However, it also places a
significant reliance on the compiler’s inherent capability to autonomously parallelize the code. Conse-
quently, variations might arise in terms of what different compilers can parallelize and their chosen
methodologies for doing so. On the other hand, the "PARALLEL LOOP" directive serves as an ex-
plicit indication by the programmer that parallelizing the specific loop is both safe and advantageous.
Meanwhile, adopting the "KERNELS" construct yields the ensuing output:

conti:
30, Generating default present(x(:n,:m),z(:n,:m),y(:n,:m))
33, Loop is parallelizable
34, Loop is parallelizable

Generating Tesla code
33, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
34, ! blockidx%x threadidx%x auto-collapsed

nonconti:
51, Generating default present(x(:n,:m),z(:n,:m),y(:n,:m))
54, Loop is parallelizable
55, Loop is parallelizable

Generating Tesla code
54, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x

collapsed-innermost
55, ! blockidx%x threadidx%x auto-collapsed

Time(%) Total Time (ns) Name
0 ------- --------------- ------------------------
1 50.0 6,116,883 locality_conti_34_gpu
2 50.0 6,115,570 locality_nonconti_55_gpu

As evident from the output, it appears that the "KERNELS" construct potentially facilitates cache
alignment, a feature that may not be as pronounced when employing the "PARALLEL" construct.

Placing the loop over the leftmost dimension as the innermost loop is consistently a safe
practice. Furthermore, due to the faster growth of the innermost loop, it is imperative that
the largest dimension of an array corresponds to the leftmost dimension.

Loop ordering

2.3.1 Array reductions

In certain scenarios, we compute the average of a multidimensional array to generate another array
with reduced dimensions. On the CPU, when the loop ordering does not align with the spatial locality
of the larger array, the compiler may reorganize the loops. However, the question arises: is this re-
ordering beneficial in this context? Let’s examine the subsequent example. Consider a 2D array where
we compute an average along the second dimension. For the purpose of highlighting potential issues
with compiler optimization, we assume that the second dimension is larger than the first dimension.

Guidelines for Fortran Programming on Heterogeneous Architectures 8

81 SUBROUTINE redu01(x, s, n, m)
82 DIMENSION x(n,m), s(n)
83 #IFDEF _OPENACC
84 #IF defined LOO
85 !$ACC PARALLEL DEFAULT(PRESENT)
86 #ELIF defined KER
87 !$ACC KERNELS DEFAULT(PRESENT)
88 #ENDIF
89 #ENDIF
90 !$ACC LOOP SEQ
91 DO j = 1, m
92 !$ACC LOOP
93 DO i = 1, n
94 s(i) = s(i) + x(i,j)
95 ENDDO
96 ENDDO
97 #IFDEF _OPENACC
98 #IF defined LOO
99 !$ACC END PARALLEL
100 #ELIF defined KER
101 !$ACC END KERNELS
102 #ENDIF
103 #ENDIF
104 ENDSUBROUTINE redu01
105
106 SUBROUTINE redu02(x, s, n, m)
107 DIMENSION x(n,m), s(n)
108 #IFDEF _OPENACC
109 #IF defined LOO
110 !$ACC PARALLEL DEFAULT(PRESENT)
111 #ELIF defined KER
112 !$ACC KERNELS DEFAULT(PRESENT)
113 #ENDIF
114 #ENDIF
115 !$ACC LOOP
116 DO i = 1, n
117 !$ACC LOOP SEQ
118 DO j = 1, m
119 s(i) = s(i) + x(i,j)
120 ENDDO
121 ENDDO
122 #IFDEF _OPENACC
123 #IF defined LOO
124 !$ACC END PARALLEL
125 #ELIF defined KER
126 !$ACC END KERNELS
127 #ENDIF
128 #ENDIF
129 ENDSUBROUTINE redu02

Upon compiling the code on the CPU, the following messages are displayed: In the first version,
there exists a perfect data locality concerning the x array. Consequently, the compiler produces a
vector for the loop denoted by "i". In the subsequent version, we modify the loop order with the in-
tent of observing whether the compiler generates a vector for the larger dimension, represented by
the loop marked "j". However, the compiler’s optimization process results in the reversal of the loop.
Consequently, both versions exhibit identical performance outcomes.

redu01:
93, Generated vector simd code for the loop

redu02:
116, Loop interchange produces reordered loop nest: 118,116

Guidelines for Fortran Programming on Heterogeneous Architectures 9

Generated vector simd code for the loop

% cumulative self self total
time seconds seconds calls ms/call ms/call name
50.00 0.02 0.02 1 20.11 20.11 locality_redu01_
50.00 0.04 0.02 1 20.11 20.11 locality_redu02_

The issue becomes evident when considering the GPU. The loop labeled "j" cannot be parallelized
due to the exposed use of the s array. In such a scenario, optimal performance can be attained by
enclosing the sequential loop within the parallel loop, similar to the approach in the second version.
Notably, the second version demonstrates a twofold increase in speed compared to the first version.

redu01:
85, Generating Tesla code

91, !$acc loop seq
93, !$acc loop gang, vector(128) ! blockidx%x threadidx%x

85, Generating default present(s(:n),x(:n,:m))
91, Loop carried dependence due to exposed use of s(:n) prevents parallelization

redu02:
110, Generating Tesla code

116, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
118, !$acc loop seq

110, Generating default present(x(:n,:m),s(:n))

Time(%) Total Time (ns) Name
0 ------- --------------- -----------------------
1 68.8 4,241,792 locality_redu01_85_gpu
2 31.2 1,922,450 locality_redu02_110_gpu

When reducing multidimensional arrays to fewer dimensions, organizing the loops over the
reduced array as the outermost loops results in improved performance.

Loop ordering: Array reductions

2.4 Loop expressing
The loop expression pertains to temporal locality within memory. Temporal locality means that an
instruction that is recently executed has a high chance of execution again. So the instruction is kept in
cache memory such that it can be fetched easily and takes no time to search for the same instruction.
Let’s explore various methods of loop expression through the following example.

45 SUBROUTINE expl(x, z, s, t, n, m)
46 DIMENSION y(n,m), z(n,m), x(n,m), s(n,m), t(n,m)
47 #IFDEF _OPENACC
48 #IF defined LOO
49 !$ACC PARALLEL LOOP COLLAPSE(2) PRESENT(x,z,s,t) CREATE(y)
50 #ELIF defined KER
51 !$ACC KERNELS PRESENT(x,z,s,t) CREATE(y)
52 #ENDIF
53 #ENDIF
54 DO j = 1, m
55 DO i = 1, n
56 x(i,j) = x(i,j) * t(i,j)
57 y(i,j) = x(i,j)**3.
58 z(i,j) = z(i,j) + y(i,j)
59 s(i,j) = s(i,j)/3. + z(i,j)
60 t(i,j) = t(i,j) * s(i,j)

Guidelines for Fortran Programming on Heterogeneous Architectures 10

61 ENDDO
62 ENDDO
63 #IFDEF _OPENACC
64 #IF defined KER
65 !$ACC END KERNELS
66 #ENDIF
67 #ENDIF
68 ENDSUBROUTINE expl
69
70 SUBROUTINE impl(x, z, s, t)
71 DIMENSION z(:,:), x(:,:), s(:,:), t(:,:)
72 DIMENSION y(SIZE(x, DIM=1),SIZE(x, DIM=2))
73 #IFDEF _OPENACC
74 !$ACC KERNELS PRESENT(x,z,s,t) CREATE(y)
75 #ENDIF
76 x(:,:) = x(:,:) * t(:,:)
77 y(:,:) = x(:,:)**3.
78 z(:,:) = z(:,:) + y(:,:)
79 s(:,:) = s(:,:)/3. + z(:,:)
80 t(:,:) = t(:,:) * s(:,:)
81 #IFDEF _OPENACC
82 !$ACC END KERNELS
83 #ENDIF
84 ENDSUBROUTINE impl
85
86 SUBROUTINE miximex(x, z, s, t, m)
87 DIMENSION z(:,:), x(:,:), s(:,:), t(:,:)
88 DIMENSION y(SIZE(x, DIM=1),SIZE(x, DIM=2))
89 #IFDEF _OPENACC
90 #IF defined LOO
91 !$ACC PARALLEL LOOP PRESENT(x,z,s,t) CREATE(y)
92 #ELIF defined KER
93 !$ACC KERNELS PRESENT(x,z,s,t) CREATE(y)
94 #ENDIF
95 #ENDIF
96 DO j = 1, m
97 x(:,j) = x(:,j) * t(:,j)
98 y(:,j) = x(:,j)**3.
99 z(:,j) = z(:,j) + y(:,j)
100 s(:,j) = s(:,j)/3. + z(:,j)
101 t(:,j) = t(:,j) * s(:,j)
102 ENDDO
103 #IFDEF _OPENACC
104 #IF defined KER
105 !$ACC END KERNELS
106 #ENDIF
107 #ENDIF
108 ENDSUBROUTINE miximex

In the provided example, the code reuses the variable t(i, j) after three lines of instructions. The
management of the cache in this context is optimized by considering the temporal locality of variables,
prompting the compiler to retain these variables within the cache. Conversely, in the loop constructed
using array notation, there exist (4n − 1) × (4m − 1) lines of instructions before the reuse of t(i, j).
For a substantial loop, the array t may be evicted from the cache and subsequently reloaded. Conse-
quently, the loop’s execution might decelerate due to the overhead associated with data access. We also
employed a combination of the two approaches. In terms of performance, the explicit loop expression
proves to be the fastest, followed by the mixed approach, with the least optimal performance observed
in the case involving array notation.

Guidelines for Fortran Programming on Heterogeneous Architectures 11

% cumulative self self total
time seconds seconds calls s/call s/call name
49.42 9.49 9.49 1 9.49 19.24 loops_tempo_
20.82 13.49 4.00 1 4.00 4.00 loops_impl_
20.61 17.44 3.96 1 3.96 3.96 loops_miximex_
9.34 19.24 1.79 1 1.79 1.79 loops_expl_
0.00 19.24 0.00 1 0.00 19.24 MAIN_

Upon recompiling the code with the optimizer options enabled, the compiler generates the following
messages:

expl:
54, Loop not fused: function call before adjacent loop
55, Generated vector simd code for the loop

impl:
76, Loop not fused: different loop trip count

Generated vector simd code for the loop
77, Loop not fused: different loop trip count

Generated vector simd code for the loop
78, Loop not fused: different loop trip count

Generated vector simd code for the loop
79, Loop not fused: different loop trip count

Generated vector simd code for the loop
80, Loop not fused: function call before adjacent loop

Generated vector simd code for the loop
miximex:

96, Loop not fused: function call before adjacent loop
97, Loop not fused: different loop trip count

Generated vector simd code for the loop
98, Loop not fused: different loop trip count

Generated vector simd code for the loop
99, Loop not fused: different loop trip count

Generated vector simd code for the loop
100, Loop not fused: different loop trip count

Generated vector simd code for the loop
101, Generated vector simd code for the loop

As indicated in the compiler report, when employing the explicit loop construct wherein all calcu-
lations are consolidated within a single loop by the developer, the compiler engages vectorization for
the innermost loop. In contrast, for both the array notation and mixed versions, while the compiler
continues to vectorize the inner loops of each instruction, it encounters challenges in merging the in-
structions. The performance report underscores a notable distinction: the explicit loop outperforms
the others by nearly twofold.

% cumulative self self total
time seconds seconds calls s/call s/call name
43.17 2.53 2.53 1 2.53 2.53 loops_impl_
37.88 4.76 2.22 1 2.22 2.22 loops_miximex_
19.11 5.88 1.12 1 1.12 1.12 loops_expl_
0.00 5.88 0.00 1 0.00 0.00 MAIN_
0.00 5.88 0.00 1 0.00 5.88 loops_tempo_

When compiling the code for GPU utilization via OpenACC, the explicit loop version can be executed
on the GPU using both the "KERNELS" and "PARALLEL" constructs. However, the "KERNELS"
construct exclusively applies to the array notation. By employing the "KERNELS" construct for all
three versions, insights from the compiler report emerge: The compiler launches a single kernel for
the explicit loop version, collapsing the two loops into one while for the next two versions, the compiler
initiates individual kernels for each instruction. In terms of performance, the anticipated outcome
is evident: The explicit loop demonstrates the highest speed (30.8%). The mixed version follows suit
as the second fastest (a cumulative 33.1%, comprising 24.3% and four instances of 2.2%). The array
notation, representing the implicit loop, shows the slowest performance.

Guidelines for Fortran Programming on Heterogeneous Architectures 12

expl:
51, Generating present(t(:,:),x(:,:),z(:,:),s(:,:))

Generating create(y(:,:)) [if not already present]
54, Loop is parallelizable
55, Loop is parallelizable

Generating Tesla code
54, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
55, ! blockidx%x threadidx%x auto-collapsed

impl:
74, Generating present(t(:,:),x(:,:),z(:,:),s(:,:))

Generating create(y(:,:)) [if not already present]
76, Loop is parallelizable

Generating Tesla code
76, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
77, Loop is parallelizable

Generating Tesla code
77, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
78, Loop is parallelizable

Generating Tesla code
78, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
79, Loop is parallelizable

Generating Tesla code
79, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
80, Loop is parallelizable

Generating Tesla code
80, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
miximex:

93, Generating present(t(:,:),x(:,:),z(:,:),s(:,:))
Generating create(y(:,:)) [if not already present]

96, Loop is parallelizable
97, Loop is parallelizable

Generating Tesla code
96, !$acc loop gang, vector(4) ! blockidx%y threadidx%y
97, !$acc loop gang, vector(32) ! blockidx%x threadidx%x

98, Loop is parallelizable
Generating Tesla code
96, !$acc loop gang, vector(4) ! blockidx%y threadidx%y
98, !$acc loop gang, vector(32) ! blockidx%x threadidx%x

99, Loop is parallelizable
Generating Tesla code
96, !$acc loop gang, vector(4) ! blockidx%y threadidx%y
99, !$acc loop gang, vector(32) ! blockidx%x threadidx%x

100, Loop is parallelizable
Generating Tesla code
96, !$acc loop gang, vector(4) ! blockidx%y threadidx%y

100, !$acc loop gang, vector(32) ! blockidx%x threadidx%x
101, Loop is parallelizable

Generating Tesla code
96, !$acc loop gang, vector(4) ! blockidx%y threadidx%y

101, !$acc loop gang, vector(32) ! blockidx%x threadidx%x

The performance report on the GPU is given as

Guidelines for Fortran Programming on Heterogeneous Architectures 13

Time(%) Total Time (ns) Name
0 ------- --------------- ---------------------
1 30.8 135,331,997 loops_expl_55_gpu
2 27.5 121,123,545 loops_impl_77_gpu
3 24.3 106,930,294 loops_miximex_98_gpu
4 2.2 9,696,291 loops_impl_79_gpu
5 2.2 9,578,369 loops_miximex_99_gpu
6 2.2 9,562,945 loops_miximex_101_gpu
7 2.2 9,560,259 loops_miximex_100_gpu
8 2.2 9,557,506 loops_miximex_97_gpu
9 2.2 9,540,833 loops_impl_80_gpu
10 2.2 9,530,785 loops_impl_78_gpu
11 2.2 9,514,882 loops_impl_76_gpu

Employing the "PARALLEL" construct with "COLLAPSE" for the explicit loop, utilizing "KER-
NELS" for the array notation (as "PARALLEL" is not permitted), and employing "PARALLEL" for the
mixed version yields the following observation: the explicit loop remains the fastest, while the perfor-
mance of the mixed version experiences a decline. This reduction in performance for the mixed version
is attributed to the compiler’s challenge in determining the optimal distribution of instructions across
gangs and vectors.

During the computation phase, the utilization of the explicit loop construct consistently re-
sults in better performance, whether executed on a CPU or GPU.

Loop expressing

2.4.1 Initializing/Copying Arrays

In cases where a loop does not involve data reuse, as seen during the initialization phase of calcu-
lations, optimizing efforts should be directed toward enhancing spatial data locality. To cater to this
goal, specialized functions are available for initialization and copying, denoted as msetN and mcopyN,
where N corresponds to the calculation precision. It’s important to emphasize that these functions are
not native Fortran intrinsic functions. Consequently, the code should be structured in a manner that
prompts the compiler to utilize them (if automatic utilization is not feasible).

Let’s revisit the three approaches to expressing the loop construct: explicit, array, and mixed, as
illustrated in the following example.

21 SUBROUTINE loop(x, y, z, n, m)
22 DIMENSION x(n,m), y(n,m), z(n,m)
23 #IFDEF _OPENACC
24 #IF defined LOO
25 !$ACC PARALLEL LOOP COLLAPSE(2) PRESENT(x,y,z)
26 #ELIF defined KER
27 !$ACC KERNELS PRESENT(x,y,z)
28 #ENDIF
29 #ENDIF
30 DO j = 1, m
31 DO i = 1, n
32 y(i,j) = 8.0
33 z(i,j) = x(i,j)
34 ENDDO
35 ENDDO
36 #IFDEF _OPENACC
37 #IF defined KER
38 !$ACC END KERNELS
39 #ENDIF
40 #ENDIF

Guidelines for Fortran Programming on Heterogeneous Architectures 14

41 ENDSUBROUTINE loop
42
43 SUBROUTINE array(x, y, z)
44 DIMENSION x(:,:), y(:,:), z(:,:)
45 #IFDEF _OPENACC
46 !$ACC KERNELS PRESENT(x,y,z)
47 #ENDIF
48 y(:,:) = 8.0
49 z(:,:) = x(:,:)
50 #IFDEF _OPENACC
51 !$ACC END KERNELS
52 #ENDIF
53 ENDSUBROUTINE array
54
55 SUBROUTINE mix(x, y, z, m)
56 DIMENSION x(:,:), y(:,:), z(:,:)
57 #IFDEF _OPENACC
58 #IF defined LOO
59 !$ACC PARALLEL LOOP PRESENT(x,y,z)
60 #ELIF defined KER
61 !$ACC KERNELS PRESENT(x,y,z)
62 #ENDIF
63 #ENDIF
64 DO j = 1, m
65 y(:,j) = 8.0
66 z(:,j) = x(:,j)
67 ENDDO
68 #IFDEF _OPENACC
69 #IF defined KER
70 !$ACC END KERNELS
71 #ENDIF
72 #ENDIF
73 ENDSUBROUTINE mix

Upon compiling the code with optimization options, the ensuing outcomes are evident: The explicit
loop is vectorized by the compiler. For the array and mixed versions, the compiler employs optimized
memory functions, mset and mcopy, resulting in enhanced performance. It’s worth noting a potential
drawback of the array notation: if the cache becomes saturated, it can lead to latencies that adversely
affect overall performance. The mixed construct strategically confines the application of mset or mcopy
to the first dimension of arrays, aligning with an optimal cache blocking strategy.

loop:
31, Generated vector simd code for the loop

array:
48, Memory set idiom, loop replaced by call to __c_mset8
49, Memory copy idiom, loop replaced by call to __c_mcopy8

mix:
65, Memory set idiom, loop replaced by call to __c_mset8
66, Memory copy idiom, loop replaced by call to __c_mcopy8

% cumulative self self total
time seconds seconds calls s/call s/call name

100.50 3.96 3.96 1 3.96 3.96 for_loop_
0.00 3.96 0.00 1 0.00 0.00 MAIN_
0.00 3.96 0.00 1 0.00 0.00 for_array_
0.00 3.96 0.00 1 0.00 3.96 for_initial_
0.00 3.96 0.00 1 0.00 0.00 for_mix_

When utilizing the "KERNELS" construct on the GPU, the explicit loop structure and array notation
yield equivalent outcomes. In both instances, the compiler performs an auto-collapsed operation as
illustrated below. Nevertheless, in the mixed version, the compiler treats the outer and inner loops

Guidelines for Fortran Programming on Heterogeneous Architectures 15

distinctly, employing diverse gang, worker, and vector sets. Consequently, this approach results in
inferior performance compared to the two preceding cases.

loop:
27, Generating present(x(:,:),z(:,:),y(:,:))
30, Loop is parallelizable
31, Loop is parallelizable

Generating Tesla code
30, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
31, ! blockidx%x threadidx%x auto-collapsed

array:
46, Generating present(x(:,:),z(:,:),y(:,:))
48, Loop is parallelizable

Generating Tesla code
48, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
49, Loop is parallelizable

Generating Tesla code
49, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
mix:

61, Generating present(x(:,:),z(:,:),y(:,:))
64, Loop is parallelizable
65, Loop is parallelizable

Generating Tesla code
64, !$acc loop gang, vector(4) ! blockidx%y threadidx%y
65, !$acc loop gang, vector(32) ! blockidx%x threadidx%x

66, Loop is parallelizable
Generating Tesla code
64, !$acc loop gang, vector(4) ! blockidx%y threadidx%y
66, !$acc loop gang, vector(32) ! blockidx%x threadidx%x

Time(%) Total Time (ns) Name
0 ------- --------------- ----------------
1 33.5 9,465,615 for_loop_31_gpu
2 22.7 6,395,744 for_mix_66_gpu
3 22.4 6,327,135 for_array_49_gpu
4 10.7 3,015,919 for_mix_65_gpu
5 10.7 3,009,870 for_array_48_gpu

For execution on the CPU, opting for a mixed loop and array approach consistently results
in better performance. However, on the GPU, the explicit loop consistently ensures better
performance.

Initializing/Copying Arrays

2.4.2 Loop fusion

Loop fusion involves the merging of neighboring or closely situated loops into a singular loop. The
advantages of loop fusion mirror those of loop unrolling. Moreover, when the two pre-optimized loops
access shared data, loop fusion enhances cache locality, furnishing the compiler with greater prospects
for harnessing instruction-level parallelism. Let’s examine the subsequent example to delve deeper
into this concept.

Guidelines for Fortran Programming on Heterogeneous Architectures 16

23 SUBROUTINE nofused(x, y, z, s, v)
24 DIMENSION x(:,:), y(:,:), z(:,:), s(:,:), v(:,:)
25 DIMENSION t(SIZE(x, DIM=1),SIZE(x, DIM=2))
26 DIMENSION u(SIZE(x, DIM=1),SIZE(x, DIM=2))
27 #IFDEF _OPENACC
28 #IF defined KER
29 !$ACC KERNELS PRESENT(x,y,z,s,v) CREATE(t,u)
30 #ENDIF
31 #ENDIF
32 t(:,:) = x(:,:) * y(:,:)
33 u(:,:) = z(:,:) + s(:,:)
34 v(:,:) = t(:,:) / u(:,:)
35 #IFDEF _OPENACC
36 #IF defined KER
37 !$ACC END KERNELS
38 #ENDIF
39 #ENDIF
40 ENDSUBROUTINE nofused
41
42 SUBROUTINE fuseda(x, y, z, s, v, n, m)
43 DIMENSION x(n,m), y(n,m), z(n,m), s(n,m), t(n,m), u(n,m), v(n,m)
44 #IFDEF _OPENACC
45 #IF defined KER
46 !$ACC KERNELS PRESENT(x,y,z,s,v) CREATE(t,u)
47 #ENDIF
48 #ENDIF
49 t(:,:) = x(:,:) * y(:,:)
50 u(:,:) = z(:,:) + s(:,:)
51 v(:,:) = t(:,:) / u(:,:)
52 #IFDEF _OPENACC
53 #IF defined KER
54 !$ACC END KERNELS
55 #ENDIF
56 #ENDIF
57 ENDSUBROUTINE fuseda
58
59 SUBROUTINE fuseddo(x, y, z, s, v, n, m)
60 DIMENSION x(n,m), y(n,m), z(n,m), s(n,m), v(n,m)
61 #IFDEF _OPENACC
62 #IF defined LOO
63 !$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT)
64 #ELIF defined KER
65 !$ACC KERNELS DEFAULT(PRESENT)
66 #ENDIF
67 #ENDIF
68 DO j = 1, m
69 DO i = 1, n
70 t = x(i,j) * y(i,j)
71 u = z(i,j) + s(i,j)
72 v(i,j) = t / u
73 ENDDO
74 ENDDO
75 #IFDEF _OPENACC
76 #IF defined KER
77 !$ACC END KERNELS
78 #ENDIF
79 #ENDIF
80 ENDSUBROUTINE fuseddo

In this example, the dummy arguments are established through implicit shape declaration. The
compiler notification indicates that three loops remain unfused. This outcome arises from the com-

Guidelines for Fortran Programming on Heterogeneous Architectures 17

piler’s lack of knowledge regarding the number of iterations (size) associated with each dummy argu-
ment.

nofused:
32, Loop not fused: different loop trip count

Generated vector simd code for the loop
33, Loop not fused: different loop trip count

Generated vector simd code for the loop
34, Loop not fused: function call before adjacent loop

Generated vector simd code for the loop

We have the option to furnish the compiler with information regarding the size of the dummy
argument. In such instances, the compiler gains the understanding that the subsequent three loops
share the same number of iterations. Consequently, when employing the optimization option, the
compiler is empowered to fuse these loops. Consequently, the compiler successfully merges loops 55,
56, and 57, as depicted. The process of loop fusion, in this case, contributes to enhanced performance.

fuseda:
49, Array assignment / Forall at line 50,51 fused

Loop not fused: function call before adjacent loop
Generated vector simd code for the loop

As previously emphasized, utilizing an explicit loop is preferable over employing an array notation.
Furthermore, in the provided example, the arrays t and u are local variables that could potentially be
substituted with scalars. Adopting scalars in place of arrays has yielded an improvement in perfor-
mance.

% cumulative self self total
time seconds seconds calls s/call s/call name
45.04 1.46 1.46 1 1.46 1.46 fuse_nofused_
42.26 2.84 1.37 1 1.37 1.37 fuse_fuseda_
12.96 3.26 0.42 1 0.42 0.42 fuse_fuseddo_
0.00 3.26 0.00 1 0.00 0.00 MAIN_
0.00 3.26 0.00 1 0.00 3.26 fuse_fusion_

Upon compiling the code for GPU execution, a comparable pattern emerges: loop fusion is achiev-
able when we explicitly declare the shape of the arrays. However, the explicit loop maintains an
advantage by employing scalars within the loop.

nofused:
29, Generating present(v(:,:),x(:,:),y(:,:),z(:,:),s(:,:))

Generating create(u(:,:),t(:,:)) [if not already present]
32, Loop is parallelizable

Generating Tesla code
32, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
33, Loop is parallelizable

Generating Tesla code
33, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
34, Loop is parallelizable

Generating Tesla code
34, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
fuseda:

46, Generating present(v(:,:),x(:,:),y(:,:),z(:,:),s(:,:))
Generating create(u(:,:),t(:,:)) [if not already present]

49, Array assignment / Forall at line 51,50 fused
Loop is parallelizable
Generating Tesla code

Guidelines for Fortran Programming on Heterogeneous Architectures 18

49, ! blockidx%x threadidx%x auto-collapsed
!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x

fuseddo:
65, Generating default present(s(:n,:m),z(:n,:m),y(:n,:m),v(:n,:m),x(:n,:m))
68, Loop is parallelizable
69, Loop is parallelizable

Generating Tesla code
68, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
69, ! blockidx%x threadidx%x auto-collapsed

Looking at the performance on GPU reveals the following: when utilizing an implicit array, the
compiler initiates three KERNELS, contributing to approximately 43.2% of all calculations. In con-
trast, the explicit loop with scalars demonstrates a significantly reduced workload, accounting for only
23% of the total calculations.

Time(%) Total Time (ns) Name
0 ------- --------------- -------------------
1 33.7 11,165,665 fuse_fuseda_49_gpu
2 23.2 7,698,966 fuse_fuseddo_69_gpu
3 14.4 4,779,150 fuse_nofused_33_gpu
4 14.4 4,770,798 fuse_nofused_34_gpu
5 14.3 4,746,222 fuse_nofused_32_gpu

Merging identical loops into a singular loop enhances vectorization on the CPU and im-
proves KERNEL occupancy on the GPU. This yields improved performance in both cases.

Loop fusion

2.5 Loop tiling
To mitigate cache misses and paging activity, it is effective to divide extensive matrices into smaller
rectangular blocks. This partitioning is achieved by segmenting the "iteration space" into blocks. An
illustrative case is the multiplication of square matrices.

24 SUBROUTINE mmnotailing (x, y, z, n)
25 DIMENSION x(n,n), y(n,n), z(n,n)
26 #IFDEF _OPENACC
27 #IF defined KER
28 !$ACC KERNELS DEFAULT(PRESENT)
29 #ENDIF
30 #ENDIF
31 x(:,:) = 0.
32 DO j = 1, n
33 DO k = 1, n
34 DO i = 1, n
35 x(i,j) = x(i,j) + y(i,k) * z(k,j)
36 END DO
37 END DO
38 END DO
39 #IFDEF _OPENACC
40 #IF defined KER
41 !$ACC END KERNELS
42 #ENDIF
43 #ENDIF
44 ENDSUBROUTINE mmnotailing

Guidelines for Fortran Programming on Heterogeneous Architectures 19

According to its definition, every entry in the product matrix x necessitates the inclusion of an entire
row and column from the matrices undergoing multiplication. When implemented in a straightforward
manner, as demonstrated above, this implies that one of the matrices will always be accessed along
its less-efficient direction (such as row-wise in Fortran). Furthermore, given that each row of y and
each column of z are used N times, there could potentially be as many as N repeated fetches of both
matrices in their entirety, as seen in the conventional matrix multiplication approach. This poses a
significant performance drawback and prompts an exploration for an improved approach to define the
memory layout for this operation.

A viable strategy involves tailing a conventional loop, wherein an outer loop iterates over the tails,
while the inner loop traverses each tail sequentially. The selection of the tile size should be made
carefully to ensure it fits within the cache. This optimization technique aims to mitigate the mentioned
performance challenges.

46 SUBROUTINE mmontailing (x, y, z, n, is, js, ks)
47 DIMENSION x(n,n), y(n,n), z(n,n)
48 #IFDEF _OPENACC
49 #IF defined KER
50 !$ACC KERNELS DEFAULT(PRESENT)
51 #ENDIF
52 #ENDIF
53 x(:,:) = 0.
54 DO it = 1, n, is
55 DO jt = 1, n, js
56 DO kt = 1, n, ks
57 DO j = jt, min(n, jt+js-1)
58 DO k = kt, min(n, kt+ks-1)
59 DO i = it, min(n, it+is-1)
60 x(i,j) = x(i,j) + y(i,k) * z(k,j)
61 ENDDO
62 ENDDO
63 ENDDO
64 ENDDO
65 ENDDO
66 ENDDO
67 #IFDEF _OPENACC
68 #IF defined KER
69 !$ACC END KERNELS
70 #ENDIF
71 #ENDIF
72 ENDSUBROUTINE mmontailing

This complex loop structure incurs additional overhead in terms of loop initialization and control.
However, it offers the advantage of minimizing paging activity and maximizing the reuse of data al-
ready present in the cache. When running the code on the CPU, the loop-tailing version exhibits better
performance.

% cumulative self self total
time seconds seconds calls s/call s/call name
72.72 5.46 5.46 1 5.46 5.46 caching_mmnotailing_
27.67 7.54 2.08 1 2.08 2.08 caching_mmontailing_
0.00 7.54 0.00 1 0.00 0.00 MAIN_
0.00 7.54 0.00 1 0.00 7.54 caching_cachemanager_

The scenario on the GPU presents a contrast. In the GPU context, the compiler exclusively par-
allelizes loops 62 and 63, leaving the rest of the loops as sequential. Consequently, the manual loop
tailing approach is anticipated to perform significantly slower on the GPU compared to the conven-
tional implementation.

Guidelines for Fortran Programming on Heterogeneous Architectures 20

50, Generating default present(z(:,:),y(:,:),x(:,:))
53, Loop is parallelizable

Generating Tesla code
53, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
54, Loop carried dependence of x prevents parallelization

Loop carried backward dependence of x prevents vectorization
Generating Tesla code
54, !$acc loop seq
55, !$acc loop seq
56, !$acc loop seq
57, !$acc loop seq
58, !$acc loop vector(128) ! threadidx%x
59, !$acc loop seq

55, Loop carried dependence of x prevents parallelization
Loop carried backward dependence of x prevents vectorization

56, Loop carried dependence due to exposed use of x(:,:) prevents parallelization
57, Loop is parallelizable
58, Loop is parallelizable
59, Complex loop carried dependence of x prevents parallelization

Loop carried dependence of x prevents parallelization
Loop carried backward dependence of x prevents vectorization
Inner sequential loop scheduled on accelerator

Nonetheless, there exists a means to direct the GPU compiler towards implementing loop tailing.
This is achieved through the utilization of the TILE clause, demonstrated as follows:

79 SUBROUTINE mmontailingGPU (x, y, z, n)
80 DIMENSION x(n,n), y(n,n), z(n,n)
81 #IFDEF _OpenACC
82 #IF defined LOO
83 !$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT)
84 #ELIF defined KER
85 !$ACC KERNELS DEFAULT(PRESENT)
86 #ENDIF
87 #ENDIF
88 x(:,:) = 0.
89 !$ACC LOOP TILE(64,64)
90 DO i = 1, n
91 DO j = 1, n
92 DO k = 1, n
93 x(i,j) = x(i,j) + y(i,k) * z(k,j)
94 END DO
95 END DO
96 END DO
97 #IFDEF _OpenACC
98 #IF defined KER
99 !$ACC END KERNELS
100 #ENDIF
101 #ENDIF
102 ENDSUBROUTINE mmontailingGPU

The profile report indicates that compiler-induced tailing enhances GPU performance, while man-
ual tailing results in inferior performance on the GPU.

Time(%) Total Time (ns) Name
0 ------- --------------- -----------------------------
1 98.4 6,312,379,748 caching_mmontailing_54_gpu
2 1.5 94,337,665 caching_mmnotailing_34_gpu
3 0.1 8,996,496 caching_mmontailinggpu_85_gpu
4 0.0 60,767 caching_mmnotailing_31_gpu

Guidelines for Fortran Programming on Heterogeneous Architectures 21

5 0.0 60,512 caching_mmontailing_53_gpu
6 0.0 58,559 caching_mmontailinggpu_81_gpu

Loop tailing enhances performance on both the CPU and GPU. On the CPU, this optimiza-
tion needs to be manually implemented by the developer (with directives available in the
Cray compiler). Conversely, on the GPU, loop tailing is achieved using the "TILE" clause
within the loop construct.

Loop tiling

2.6 Repeated array accesses
There are cases inside a loop where multiple accesses are made to the same index of an array. Let’s
revisit the matrix multiplication example discussed in the preceding section:

32 DO j = 1, n
33 DO i = 1, n
34 x(i,j) = 0.
35 DO k = 1, n
36 x(i,j) = x(i,j) + y(i,k) * z(k,j)
37 END DO
38 END DO
39 END DO

When dealing with x(i, j) in each iteration, the compiler is required to access cache memory re-
peatedly, resulting in inefficiency. A potential remedy for addressing repeated array accesses involves
substituting them with temporary scalar variables, as demonstrated below:

32 DO j = 1, n
33 DO i = 1, n
34 tem = 0.
35 DO k = 1, n
36 tem = tem + y(i,k) * z(k,j)
37 END DO
38 x(i,j) = tem
39 END DO
40 END DO

This approach prompts the compiler to allocate the variable tem within a register, ensuring rapid
accessibility for the floating-point unit’s operations.

Substitute the repeated array accesses with temporary scalar variables.

Repeated array accesses

3 Vectorization/Parallelization
Vectorization involves the process of converting an algorithm that initially operates on individual
scalar values, processing one pair of operands at a time, into a vector operation. In a vector opera-
tion, a single instruction can operate on a group of data elements simultaneously, known as SIMD.
Examples of operations that can be vectorized include tasks such as Linear Algebra, Fast Fourier
Transforms, and Vector Math. Various approaches can be employed to vectorize code, including auto-
matic vectorization by the compiler, using SIMD constructs, utilizing Array notation, and more. When

Guidelines for Fortran Programming on Heterogeneous Architectures 22

dealing with nested loops, it’s important to note that the compiler typically vectorizes the inner loop.
Compiler-generated vectorization reports contain valuable insights. These reports highlight which
loops were vectorized and, importantly, provide explanations for loops that were not vectorized. The
lack of successful vectorization can stem from various facts.

3.1 I/O
Vectorization of a loop can be broken by I/O operations, such as leaving a debugging "WRITE" state-
ment. In the following example, a debugging break point is situated within the loops.

18 SUBROUTINE iononv(x, y, z, n, m)
19 DIMENSION z(n,m), y(n,m), x(n,m)
20 DO j = 1, m
21 DO i = 1, n
22 x(i,j) = 2.*x(i,j)*z(i,j) + x(i,j)*x(i,j) + x(i,j)*x(i,j)
23 y(i,j) = 1.-EXP(-x(i,j))
24 IF (y(i,j).GT.0.5) THEN
25 WRITE(*,10)i, j, y(i,j)
26 ENDIF
27 ENDDO
28 ENDDO
29 10 FORMAT(’Error at’,2X,’i=’,I5,2X,’j=’,I5,2X,’Where’,2X,’y=’,F19.12)
30 ENDSUBROUTINE iononv

Upon examining the compiler message, it is evident that the loop is not subject to vectorization
owing to an external function call.

21, Loop not vectorized/parallelized: contains call

To benefit from vectorization, the above code can be adjusted by relocating all debugging options
outside of the calculation loop. It’s important to mention that the conditional statement could also be
eliminated using a reduction construct. The revised code is as follows:

38 SUBROUTINE iov(x, y, z, n, m)
39 DIMENSION z(n,m), y(n,m), x(n,m)
40 #IFDEF _OpenACC
41 #IF defined LOO
42 !$ACC PARALLEL LOOP COLLAPSE(2) PRESENT(x,y,z)
43 #ELIF defined KER
44 !$ACC KERNELS PRESENT(x,y,z)
45 #ENDIF
46 #ENDIF
47 DO j = 1, m
48 DO i = 1, n
49 x(i,j) = 2.*x(i,j)*z(i,j) + x(i,j)*x(i,j) + x(i,j)*x(i,j)
50 y(i,j) = 1.-EXP(-x(i,j))
51 ENDDO
52 ENDDO
53 cond = MAXVAL(y)
54 #IFDEF _OpenACC
55 #IF defined LOO
56 !$ACC END PARALLEL LOOP
57 #ELIF defined KER
58 !$ACC END KERNELS
59 #ENDIF
60 #ENDIF
61 IF (cond.GT.0.5)THEN
62 WRITE(*,10) cond
63 ENDIF
64 10 FORMAT(’There is an error!’,2x,’Max is=’,F19.12)
65 ENDSUBROUTINE iov

Guidelines for Fortran Programming on Heterogeneous Architectures 23

Now, the compiler generates a vectorized version of the inner loop, along with vectorizing the re-
quired reduction for the termination condition.

iov:
47, Loop not fused: different loop trip count
48, Generated vector simd code for the loop
53, maxval reduction inlined

Loop not fused: function call before adjacent loop
Generated vector simd code for the loop containing reductions

The primary issue arising from incorporating debugging options within the loop becomes more
pronounced when compiling the code for GPU execution. On the GPU, calling the compiler runtime
function is unsupported. Hence, all instances of "PRINT" and "WRITE" must be positioned outside
the computational kernel. Conversely, in the second version, the "KERNELS" construct effectively
collapses and parallelizes the loops, as indicated below:

iov:
44, Generating present(x(:,:),z(:,:),y(:,:))
47, Loop is parallelizable
48, Loop is parallelizable

Generating Tesla code
47, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
48, ! blockidx%x threadidx%x auto-collapsed

53, maxval reduction inlined
Loop is parallelizable
Generating Tesla code
53, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
Generating implicit reduction(max:y$r)

3.2 Procedures
Calling a procedure (function or subroutine) within a loop hinders the compiler’s ability to vectorize the
loop. An example is provided below, demonstrating a situation where the "IOIPSL" routine is called
within a loop. If a certain condition is met, the "IOIPSL" routine will terminate the code.

70 SUBROUTINE pronov(x, y, z, n, m)
71 DIMENSION z(n,m), y(n,m), x(n,m)
72 DO j = 1, m
73 DO i = 1, n
74 x(i,j) = 2.*x(i,j)*z(i,j) + x(i,j)*x(i,j) + z(i,j)*z(i,j)
75 y(i,j) = 1.-EXP(-x(i,j))
76 IF (y(i,j).GE.0.5) THEN
77 CALL ipslerr_p(3,’Oops -> An erros is found’, &
78 ’All values must be smaller than 0.5’, &
79 ’Check the calculations’, ’’)
80 ENDIF
81 ENDDO
82 ENDDO
83 ENDSUBROUTINE pronov

The compiler report indicates:

73, Loop not vectorized/parallelized: contains call

We can employ a similar approach as previously mentioned to facilitate loop vectorization. The call
can be positioned after the loop (if feasible).

Guidelines for Fortran Programming on Heterogeneous Architectures 24

88 SUBROUTINE proyv(x, y, z, n, m)
89 DIMENSION z(n,m), y(n,m), x(n,m)
90 #IFDEF _OpenACC
91 #IF defined LOO
92 !$ACC PARALLEL LOOP COLLAPSE(2) PRESENT(x,y,z)
93 #ELIF defined KER
94 !$ACC KERNELS PRESENT(x,y,z)
95 #ENDIF
96 #ENDIF
97 DO j = 1, m
98 DO i = 1, n
99 x(i,j) = 2.*x(i,j)*z(i,j) + x(i,j)*x(i,j) + z(i,j)*z(i,j)
100 y(i,j) = 1.-EXP(-x(i,j))
101 ENDDO
102 ENDDO
103 cond = MAXVAL(y)
104 #IFDEF _OpenACC
105 #IF defined LOO
106 !$ACC END PARALLEL LOOP
107 #ELIF defined KER
108 !$ACC END KERNELS
109 #ENDIF
110 #ENDIF
111 IF (cond.GE.0.5) THEN
112 CALL ipslerr_p(3,’Oops -> An erros is found’, &
113 ’All values must be smaller than 0.5’, &
114 ’Check the calculations’, ’’)
115 ENDIF
116 ENDSUBROUTINE proyv

In this scenario, the compiler performs subroutine inlining and successfully vectorizes the loop, as
indicated by the compiler message.

23, proyv inlined, size=25, file Vectorization.f90 (88)
97, Loop not fused: different loop trip count
98, Generated vector simd code for the loop

FMA (fused multiply-add) instruction(s) generated
99, Loop not fused: function call before adjacent loop

Generated vector simd code for the loop containing reductions

By implementing this adjustment, the code becomes well-suited for GPU execution as well. The
loop is executed on the GPU, and a scalar variable can be conveniently copied from the GPU to the
CPU. The stop condition is examined, and if the condition evaluates to true, the code halts.

proyv:
94, Generating present(x(:,:),z(:,:),y(:,:))
97, Loop is parallelizable
98, Loop is parallelizable

Generating Tesla code
97, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
98, ! blockidx%x threadidx%x auto-collapsed

103, maxval reduction inlined
Loop is parallelizable
Generating Tesla code

103, ! blockidx%x threadidx%x auto-collapsed
!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
Generating implicit reduction(max:y$r)

Guidelines for Fortran Programming on Heterogeneous Architectures 25

iov:
44, Generating present(x(:,:),z(:,:),y(:,:))
47, Loop is parallelizable
48, Loop is parallelizable

Generating Tesla code
47, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
48, ! blockidx%x threadidx%x auto-collapsed

53, maxval reduction inlined
Loop is parallelizable
Generating Tesla code
53, ! blockidx%x threadidx%x auto-collapsed

!$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
Generating implicit reduction(max:y$r)

To optimize vectorization when running on the CPU and parallelization when on the GPU, it
is advisable to refrain from embedding any I/O procedures and debugging within the loops.

I/O

3.3 Function
Functions can be called within loops while maintaining loop vectorization, employing three approaches:
(i) calling an external function with enforced inlining, (ii) encapsulating the function in an external file
and including it within the main program, and (iii) defining the function as an internal entity within
the program. These techniques are illustrated in the following example:

134 SUBROUTINE profyv1(x, y, z, n, m)
135 DIMENSION z(n,m), y(n,m), x(n,m)
136 #IFDEF _OPENACC
137 #IF defined LOO
138 !$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT)
139 #ELIF defined KER
140 !$ACC KERNELS DEFAULT(PRESENT)
141 #ENDIF
142 #ENDIF
143 DO j = 1, m
144 DO i = 1, n
145 a = 2.*x(i,j)*z(i,j) + x(i,j)*x(i,j) + z(i,j)*z(i,j)
146 y(i,j) = funv(a)
147 ENDDO
148 ENDDO
149 #IFDEF _OPENACC
150 #IF defined KER
151 !$ACC END KERNELS
152 #ENDIF
153 #ENDIF
154 ENDSUBROUTINE profyv1
155
156 SUBROUTINE profyv2(x, y, z, n, m)
157 DIMENSION z(n,m), y(n,m), x(n,m)
158 #INCLUDE "func.h"
159 #IFDEF _OPENACC
160 #IF defined LOO
161 !$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT)
162 #ELIF defined KER
163 !$ACC KERNELS DEFAULT(PRESENT)
164 #ENDIF

Guidelines for Fortran Programming on Heterogeneous Architectures 26

165 #ENDIF
166 DO j = 1, m
167 DO i = 1, n
168 a = 2.*x(i,j)*z(i,j) + x(i,j)*x(i,j) + z(i,j)*z(i,j)
169 y(i,j) = fu(a)
170 ENDDO
171 ENDDO
172 #IFDEF _OPENACC
173 #IF defined KER
174 !$ACC END KERNELS
175 #ENDIF
176 #ENDIF
177 ENDSUBROUTINE profyv2
178
179 SUBROUTINE profyv3(x, y, z, n, m)
180 DIMENSION z(n,m), y(n,m), x(n,m)
181 fu(t) = 1.-EXP(-t)
182 #IFDEF _OPENACC
183 #IF defined LOO
184 !$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT)
185 #ELIF defined KER
186 !$ACC KERNELS DEFAULT(PRESENT)
187 #ENDIF
188 #ENDIF
189 DO j = 1, m
190 DO i = 1, n
191 a = 2.*x(i,j)*z(i,j) + x(i,j)*x(i,j) + z(i,j)*z(i,j)
192 y(i,j) = fu(a)
193 ENDDO
194 ENDDO
195 #IFDEF _OPENACC
196 #IF defined KER
197 !$ACC END KERNELS
198 #ENDIF
199 #ENDIF
200 ENDSUBROUTINE profyv3
201
202 SUBROUTINE profyv4(x, y, z, n, m)
203 !$ACC ROUTINE(funva) vector
204 DIMENSION z(n,m), y(n,m), x(n,m), a(n)
205 #IFDEF _OPENACC
206 #IF defined LOO
207 !$ACC PARALLEL LOOP GANG PRESENT(x,y,z) CREATE(a)
208 #ELIF defined KER
209 !$ACC KERNELS PRESENT(x,y,z) CREATE(a)
210 #ENDIF
211 #ENDIF
212 DO j = 1, m
213 a(:) = 2.*x(:,j)*z(:,j) + x(:,j)*x(:,j) + z(:,j)*z(:,j)
214 y(:,j) = funva(a(:),n)
215 ENDDO
216 #IFDEF _OPENACC
217 #IF defined KER
218 !$ACC END KERNELS
219 #ENDIF
220 #ENDIF
221 ENDSUBROUTINE profyv4

Upon compiling the code for CPU execution, even when employing the aggressive inline option, the
first version of the code yields the following message:

Guidelines for Fortran Programming on Heterogeneous Architectures 27

profyv1:
144, Loop not vectorized/parallelized: contains call
145, FMA (fused multiply-add) instruction(s) generated

profyv2:
166, FMA (fused multiply-add) instruction(s) generated
167, Generated vector simd code for the loop

FMA (fused multiply-add) instruction(s) generated
profyv3:

189, FMA (fused multiply-add) instruction(s) generated
190, Generated vector simd code for the loop

FMA (fused multiply-add) instruction(s) generated
profyv4:

212, Loop not vectorized/parallelized: contains call
FMA (fused multiply-add) instruction(s) generated

213, Loop not fused: function call before adjacent loop
Generated vector simd code for the loop
FMA (fused multiply-add) instruction(s) generated

As evident from the results, the compiler does not vectorize loop 144. The function is called n times,
corresponding to the number of iterations in the loops. The cumulative execution time is also displayed
in the performance profile. Now, let’s explore the compiler’s behavior when we incorporate the function
into the program.

There are distinct advantages to employing the "INCLUDE" approach. Firstly, the compiler vector-
izes the most interior loop (167), resulting in an execution time that is nearly one-third of the previous
case. However, an even more optimized situation arises when defining the function as an internal func-
tion within the code. Here, the compiler vectorizes the most inner loop, leading to a reduced execution
time compared to the "INCLUDE" approach.

Furthermore, we should consider the function call scenario when the function returns an array
instead of a scalar. In this scenario, the number of function calls is reduced, potentially leading to
improved performance. Remarkably, the compiler manages to vectorize the inner loop in this case, and
the operations within the function are also optimized.

In terms of performance, the most favorable outcome is achieved by explicitly incorporating the
function within the routine. The second-best approach is employing the "INCLUDE" method. Notably,
calling an external function in the vectorized case (profyv4) demonstrates enhanced performance com-
pared to calling an external scalar function.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
35.57 0.27 0.27 134217728 0.00 0.00 functions_funv_
22.40 0.44 0.17 1 170.22 440.57 vectorial_profyv1_
10.54 0.52 0.08 4096 0.02 0.02 functions_funva_
10.54 0.60 0.08 1 80.10 80.10 vectorial_profyv2_
9.22 0.67 0.07 1 70.09 150.19 vectorial_profyv4_
6.59 0.72 0.05 1 50.06 50.06 vectorial_profyv3_
5.27 0.76 0.04 functions_
0.00 0.76 0.00 1 0.00 0.00 MAIN_
0.00 0.76 0.00 1 0.00 720.93 vectorial_vec_

When compiling the code for GPU execution, the benefits of employing "INCLUDE" or an internal
function over the CALL become even more evident. Calling a procedure within a GPU kernel neces-
sitates the explicit definition of the level of parallelism for the procedure. This entails specifying how
the loops are to be distributed across the GPU threads. In the provided example, the two loops are par-
allelized on the GPU using the "GANG" and "VECTOR" levels of parallelism (representing two layers
of parallel execution on the GPU). Therefore, we guide the compiler to utilize a sequential version of
the function, as demonstrated below:

1 MODULE functions
2 CONTAINS
3

Guidelines for Fortran Programming on Heterogeneous Architectures 28

4 FUNCTION funv(x)
5 #IFDEF _OpenACC
6 !$ACC ROUTINE SEQ
7 #ENDIF
8 funv = 1.-EXP(-x)
9 ENDFUNCTION funv
10
11 FUNCTION funva(x,n)
12 #IFDEF _OpenACC
13 !$ACC ROUTINE vector
14 #ENDIF
15 DIMENSION x(n), funva(n)
16 #IFDEF _OpenACC
17 !$ACC LOOP
18 #ENDIF
19 DO i= 1, n
20 funva(i) = 1.-EXP(-x(i))
21 ENDDO
22 ENDFUNCTION funva
23
24 ENDMODULE functions

By providing this clarification to the compiler, the execution times for the first three versions will
converge to nearly identical values when employing either the PARALLEL or KERNELS constructs.
The compiler treats all three versions similarly due to the specified adjustments:

profyv1:
138, Generating Tesla code

143, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
144, ! blockidx%x threadidx%x collapsed

138, Generating default present(x(:n,:m),z(:n,:m),y(:n,:m))
profyv2:

161, Generating Tesla code
166, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
167, ! blockidx%x threadidx%x collapsed

161, Generating default present(x(:n,:m),z(:n,:m),y(:n,:m))
profyv3:

184, Generating Tesla code
189, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
190, ! blockidx%x threadidx%x collapsed

184, Generating default present(x(:n,:m),z(:n,:m),y(:n,:m))
profyv4:

207, Generating present(x(:,:),z(:,:),y(:,:))
Generating create(a(:)) [if not already present]
Generating Tesla code

212, !$acc loop gang ! blockidx%x
213, !$acc loop seq

213, Loop is parallelizable

When executing on a GPU, it’s necessary to explicitly denote the vectorial operation within the
function. Despite this declaration, the performance doesn’t match that of the previous cases.

Time(%) Total Time (ns) Name
0 ------- --------------- -------------------------
1 91.4 432,876,147 vectorial_profyv4_207_gpu
2 2.9 13,518,577 vectorial_profyv1_138_gpu
3 2.9 13,496,114 vectorial_profyv2_161_gpu
4 2.9 13,495,954 vectorial_profyv3_184_gpu

Guidelines for Fortran Programming on Heterogeneous Architectures 29

To enhance vectorization during CPU execution and parallelization on a GPU, it is advis-
able to refrain from calling external functions within loops. Instead, consider utilizing "IN-
CLUDE" or internal functions.

Function

3.4 Indirect addressing
Indirect addressing involves using a variable or pointer that holds the memory address. This scenario
arises when dealing with an unstructured mesh or sorting an array, where memory access tends to be
non-sequential. This poses a challenge to the compiler since it cannot predict the memory addresses to
be accessed due to potential randomness, striding, proximity, or distance. Such access patterns often
lead to suboptimal performance. To address this issue, one potential solution involves incorporating
a contiguous dimension within the indirect addressing. By doing so, a significant portion of memory
accesses can remain contiguous, thereby improving performance. The following example illustrates
this concept:

268 SUBROUTINE indirect1(x, y, z, m)
269 DIMENSION z(m), y(m), x(m), yy(m)
270 DIMENSION inx(m)
271
272 inx = Shuffle(m)
273 DO j = 1, m
274 y(inx(j)) = 2.*x(j)*z(inx(j)) + x(j)*x(j) + z(inx(j))*z(inx(j))
275 ENDDO
276 ENDSUBROUTINE indirect1
277
278 SUBROUTINE indirect2(x, y, z, n, m)
279 DIMENSION z(n,m), y(n,m), x(n,m), yy(n,m)
280 DIMENSION inx(m)
281
282 inx = Shuffle(m)
283 DO j = 1, m
284 DO i = 1, n
285 y(i,inx(j)) = 2.*x(i,j)*z(i,inx(j)) + x(i,j)*x(i,j) + z(i,inx(j))*z(i,inx(j))
286 ENDDO
287 ENDDO
288 ENDSUBROUTINE indirect2

In the provided example, memory access occurs randomly due to the shuffled indexes. In the first
version, the loop does not get vectorized by the compiler because the array reference does not have a
stride-1 pattern, which implies that threads will not access contiguous data from the arrays. However,
introducing an extra dimension as the leftmost dimension in the array preserves memory contiguity,
allowing the compiler to utilize vectorization.

indirect1:
272, Memory copy idiom, loop replaced by call to __c_mcopy8
273, Loop not vectorized: non-stride-1 array reference

Loop unrolled 2 times
FMA (fused multiply-add) instruction(s) generated

indirect2:
282, Memory copy idiom, loop replaced by call to __c_mcopy8
283, Loop not fused: function call before adjacent loop

FMA (fused multiply-add) instruction(s) generated
284, Generated vector simd code for the loop

FMA (fused multiply-add) instruction(s) generated

Guidelines for Fortran Programming on Heterogeneous Architectures 30

Reduce indirect addressing by introducing an extra dimension that ensures contiguous
memory access.

Indirect addressing

3.5 IFs
Straightforward computations within simple "DO" loops can often be efficiently mapped to vector in-
structions. However, the presence of branching and conditionals, such as an "IF" statement within
a loop, can hinder vectorization. This is because vector instructions struggle to represent branching
operations. Nevertheless, compilers can sometimes circumvent this limitation by employing masked
assignments for basic conditionals. In this approach, the compiled code employs vector instructions to
execute both branches of the conditional ("THEN" and "ELSE" clauses). The branching condition itself
is also evaluated using vectorized operations. Ultimately, a mask is applied during the final assign-
ment to determine which results to retain from each branch. Despite this masking technique, loops
containing "IF" statements tend to have longer execution times. Let’s explore this with an example:

215 SUBROUTINE ifsindo1(x, y, z, n, m)
216 DIMENSION z(n,m), y(n,m), x(n,m)
217 #IFDEF _OPENACC
218 #IF defined LOO
219 !$ACC PARALLEL LOOP COLLAPSE(2) PRESENT(x,y,z)
220 #ELIF defined KER
221 !$ACC KERNELS PRESENT(x,y,z)
222 #ENDIF
223 #ENDIF
224 DO j = 1, m
225 DO i = 1, n
226 x(i,j) = x(i,j) + z(i,j)
227 y(i,j) = 0.5 - x(i,j)
228 IF (y(i,j).LT.0.) THEN
229 y(i,j) = EXP(y(i,j))
230 ELSE
231 y(i,j) = EXP(-y(i,j))
232 ENDIF
233 ENDDO
234 ENDDO
235 #IFDEF _OPENACC
236 #IF defined KER
237 !$ACC END KERNELS
238 #ENDIF
239 #ENDIF
240 ENDSUBROUTINE ifsindo1
241
242 SUBROUTINE ifsindo2(x, y, z, n, m)
243 DIMENSION z(n,m), y(n,m), x(n,m)
244 #IFDEF _OPENACC
245 #IF defined LOO
246 !$ACC PARALLEL LOOP COLLAPSE(2) PRESENT(x,y,z)
247 #ELIF defined KER
248 !$ACC KERNELS PRESENT(x,y,z)
249 #ENDIF
250 #ENDIF
251 DO j = 1, m
252 DO i = 1, n
253 x(i,j) = x(i,j) + z(i,j)
254 y(i,j) = 0.5 - x(i,j)
255 y(i,j) = EXP(-ABS(y(i,j)))
256 ENDDO

Guidelines for Fortran Programming on Heterogeneous Architectures 31

257 ENDDO
258 #IFDEF _OPENACC
259 #IF defined KER
260 !$ACC END KERNELS
261 #ENDIF
262 #ENDIF
263 ENDSUBROUTINE ifsindo2

In the first scenario, the compiler managed to vectorize loop 251 even in the presence of the "IF"
condition. However, it’s often possible for developers to circumvent the need for conditional statements
through the use of mathematical expressions. In the provided example, the inclusion of the conditional
statement led to a nearly twofold slowdown in the code’s performance.

ifsindo1:
225, Generated vector simd code for the loop

ifsindo2:
252, Generated vector simd code for the loop

% cumulative self self total
time seconds seconds calls ms/call ms/call name
79.27 0.19 0.19 1 190.25 190.25 vectorial_ifsindo1_
20.86 0.24 0.05 1 50.07 50.07 vectorial_ifsindo2_
0.00 0.24 0.00 1 0.00 0.00 MAIN_
0.00 0.24 0.00 1 0.00 240.31 vectorial_vec_

Similar behavior is observed when running the code on a GPU. Despite the compiler’s efforts to
parallelize both versions, the version without branching achieves faster execution on the GPU. The
compiler report and execution times for the two versions are provided below:

ifsindo1:
219, Generating present(x(:,:),z(:,:),y(:,:))

Generating Tesla code
224, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
225, ! blockidx%x threadidx%x collapsed

ifsindo2:
246, Generating present(x(:,:),z(:,:),y(:,:))

Generating Tesla code
251, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
252, ! blockidx%x threadidx%x collapsed

Time(%) Total Time (ns) Name
0 ------- --------------- --------------------------
1 65.4 22,132,737 vectorial_ifsindo1_219_gpu
2 34.6 11,716,530 vectorial_ifsindo2_246_gpu

Avoid introducing branches within loops whenever possible. Aim to maintain a single, coher-
ent control flow within the loop.

IFs

3.6 Dependence
Loop-carried dependence refers to a situation where the execution of iterations in a loop is influenced
by the values computed in previous iterations, e.g., in time/space marching. It arises when the correct
order of execution is necessary to obtain accurate results, and changing the order could lead to incorrect
or unpredictable outcomes. One example is given below:

Guidelines for Fortran Programming on Heterogeneous Architectures 32

293 DO j = 1, m
294 y(j) = y(j-1) + h * fu(x(j-1))
295 ENDDO

The compiler message indicates:

293, Loop not vectorized: data dependency
Loop unrolled 2 times
FMA (fused multiply-add) instruction(s) generated

A potential solution for this issue involves precomputing all major calculations into a temporary ar-
ray using SIMD processing. Then, isolate the sequential operations to the minimum workload feasible,
as depicted below:

301 DO j = 1, m
302 t(j) = fu(x(j-1)) * h
303 ENDDO
304 DO j = 1, m
305 y(j) = y(j-1) + t(j)
306 ENDDO

In which the compiler message indicates:

301, Loop not fused: dummy arguments read/write - possible conflict; try
-Mvect=fuse
Loop not fused: unsafe variable with target attribute
Generated vector simd code for the loop

304, Loop not fused: function call before adjacent loop
Loop not vectorized: data dependency
Loop unrolled 4 times

Minimize the sequential workload to the smallest workload feasible.

Dependence

4 Management of memory
Fortran provides several mechanisms for managing memory, especially through intrinsic functions, ar-
ray declarations, and dynamic memory allocation. Here are some key aspects of memory management
in Fortran.

4.1 Dynamic memory allocation
Dynamic memory allocation in Fortran allows for precise control over the creation and destruction of
workspaces. This can be achieved by declaring allocatable arrays, which are essentially placeholders
without assigned memory until they are specifically allocated within the program or subprogram. Once
their purpose is fulfilled, these arrays can be deallocated to free up memory resources.

REAL(KIND=dp_t), DIMENSION(:,:), ALLOCATABLE :: array
!!
ALLOCATE(array(n1,m1))
!!
DEALLOCATE(array)
!!
ALLOCATE(array(n2,m2))

Guidelines for Fortran Programming on Heterogeneous Architectures 33

!!
DEALLOCATE(array)

4.2 Pointers
Pointer variables provide a higher level of control, offering even more flexibility than allocatable arrays.
Similar to allocatable arrays, pointers can be allocated memory as needed. However, pointers offer an
added advantage – they can also serve as references to existing targets that are named separately. This
allows pointers to act as dynamic aliases for other variables and arrays, enhancing their versatility.

Consider a practical scenario involving the "Diffusive" problem in a one-dimensional context. In this
context, a tridiagonal system of equations can be efficiently solved. However, the complexity increases
when dealing with implicit problems in two-dimensional or three-dimensional settings, where the coef-
ficient matrix takes on a Pentadiagonal or Heptadiagonal form. To address this challenge, an effective
strategy is to employ the alternating direction implicit (ADI) method. This approach transforms the
original problem into a sequence of tridiagonal systems for each direction: x, y, and z. Nonetheless,
when utilizing ADI, it’s necessary to update the coefficient matrix for each direction. To facilitate this
process, a promising approach is to utilize pointer variables to represent the coefficients. This allows
for greater flexibility in handling the evolving coefficient matrices in different directions.

REAL(KIND=dp_t), POINTER, DIMENSION (:) :: a => NULL(), b => NULL(), c => NULL(), g
=> NULL(), x => NULL()

Then we can update the coefficients as follows. The coefficients are in principle different in shape.

TYPE(gridvar_t), INTENT(INOUT), TARGET :: gridvar
!!

! X Sweep
DO j=2,grid%n2

a => gridvar%data(2:grid%n1,j,1)
b => gridvar%data(2:grid%n1,j,2)
c => gridvar%data(2:grid%n1,j,3)
x => gridvar%data(2:grid%n1,j,12)
g => gridvar%data(2:grid%n1,j,7)
CALL trdiag(grid%n1-1,a,b,c,x,g)
gridvar%data(2:grid%n1,j,12) = x(:)

ENDDO
! Y Sweep
DO i=2,grid%n1

a => gridvar%data(i,2:grid%n2,4)
b => gridvar%data(i,2:grid%n2,5)
c => gridvar%data(i,2:grid%n2,6)
x => gridvar%data(i,2:grid%n2,11)
g => gridvar%data(i,2:grid%n2,8)
CALL trdiag (grid%n2-1,a,b,c,x,g)
gridvar%data(i,2:grid%n2,11) = x(:)

ENDDO

Opt for pointer variables instead of array copying. Pointers provide the most effective ap-
proach in Fortran for array manipulation.

Management of memory

Guidelines for Fortran Programming on Heterogeneous Architectures 34

5 Errors in floating-point computations
Errors in floating-point computations can arise due to the limitations of representing real numbers
with finite precision in binary. Here are some common types of errors:

• Truncation error: when a continuous mathematical process is approximated by a discrete process,
leading to a difference between the exact mathematical solution and the approximate numerical
solution

• Rounding Errors: Floating-point numbers can’t represent all real numbers exactly, leading to
rounding errors when converting between decimal and binary representations.

• Overflow and Underflow Errors: When the magnitude of a number exceeds the range that can
be represented, overflow occurs (resulting in infinity), or underflow occurs (leading to zero or
denormalized numbers).

• Cancellation Errors: Subtracting two nearly equal numbers can lead to a significant loss of pre-
cision, as the significant digits "cancel out."

• Precision Errors: Repeated arithmetic operations can lead to loss of precision. The more opera-
tions you perform, the more the result might deviate from the actual value.

• Representation Errors: Some decimal numbers can’t be represented exactly in binary, resulting
in small discrepancies between the actual value and its floating-point representation.

• Propagation of Errors: Errors can propagate through calculations, potentially magnifying inac-
curacies in complex computations or iterative algorithms.

• Loss of Associativity: Floating-point arithmetic doesn’t always follow the associative property
due to rounding. Changing the order of operations might yield slightly different results.

• Numerical Instability: Certain algorithms can amplify small errors, causing inaccurate results.
This is particularly relevant in iterative methods and simulations.

Here are some tips to avoid errors in floating-point computations:

• Choose the Right Data Type: Select the appropriate floating-point data type based on the re-
quired precision and range. For example, consider using REAL for faster computation and
REAL(8) or DOUBLE PRECISION for higher precision.

• Understand the Algorithms: Be aware of the numerical characteristics of the algorithms you’re
using. Some algorithms are more prone to numerical instability or cancellation than others.

• Minimize Accumulated Errors: Avoid excessive accumulation of rounding errors by reordering
operations or using compensated algorithms to reduce the loss of precision.

• Utilize established libraries and programming languages that provide robust implementations of
floating-point arithmetic.

• Normalize Inputs: When possible, normalize inputs to a range that minimizes precision loss.
This can help prevent underflow or overflow.

• Avoid Subtraction of Nearly Equal Numbers: In situations where subtracting nearly equal num-
bers is necessary, consider using alternative methods that preserve precision.

• Perform Error Analysis: Analyze the error propagation in your computations. This can help you
anticipate where errors might accumulate and take measures to mitigate them.

• Use Robust Algorithms: Some algorithms are designed to be more robust in the presence of
floating-point errors. Research and choose algorithms that are well-suited for your specific prob-
lem.

• Implement Error Handling: Handle exceptional cases like overflow, underflow, and NaN values
gracefully in your code. Make sure your program doesn’t crash due to these scenarios.

Guidelines for Fortran Programming on Heterogeneous Architectures 35

• Avoid Unnecessary Conversions: Minimize conversions between floating-point and integer types,
as they can introduce rounding errors.

• Keep Scale in Mind: Scaling your problem to a range that works well with the floating-point
format can help maintain accuracy.

References
1 NVIDIA HPC Compilers Reference Guide; 2023.

2 Openacc programming and best practices guide; 2021.

3 Brainerd WS. Guide to Fortran 2003 programming. Berlin: Springer; 2009 Jun 11.

4 Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in Fortran 90 the art of
parallel scientific computing. Cambridge university press; 1996 Sep 1.

5 Dongarra J, Foster I, Fox G, Gropp W, Kennedy K, Torczon L, White A. Sourcebook of parallel com-
puting. San Francisco: Morgan Kaufmann Publishers; 2003 Jan 1.

6 User Notes On Fortran Programming, An Open Cooperative Practical Guide; 1998.

7 Ryad El Khatib. General Fortran Optimizations Guide. Meteo-france - Cnrm/gmap; 2019.

8 Piper C. An Introduction to Vectorization with the Intel Fortran Compiler; 2012.

9 Pilla LL. Basics of Vectorization for Fortran Applications (Doctoral dissertation, Inria Grenoble
Rhone-Alpes); 2018.

