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Abstract This study explores the decadal potential pre-

dictability of the Atlantic Meridional Overturning Circulation

(AMOC) as represented in the IPSL-CM5A-LR model, along

with the predictability of associated oceanic and atmospheric

fields. Using a 1000-year control run, we analyze the prog-

nostic potential predictability (PPP) of the AMOC through

ensembles of simulations with perturbed initial conditions.

Based on a measure of the ensemble spread, the modelled

AMOC has an average predictive skill of 8 years, with some

degree of dependence on the AMOC initial state. Diagnostic

potential predictability of surface temperature and precipita-

tion is also identified in the control run and compared to the

PPP. Both approaches clearly bring out the same regions

exhibiting the highest predictive skill. Generally, surface

temperature has the highest skill up to 2 decades in the far

North Atlantic ocean. There are also weak signals over a few

oceanic areas in the tropics and subtropics. Predictability over

land is restricted to the coastal areas bordering oceanic

predictable regions. Potential predictability at interannual and

longer timescales is largely absent for precipitation in spite of

weak signals identified mainly in the Nordic Seas. Regions of

weak signals show some dependence on AMOC initial state.

All the identified regions are closely linked to decadal AMOC

fluctuations suggesting that the potential predictability of

climate arises from the mechanisms controlling these fluctu-

ations. Evidence for dependence on AMOC initial state also

suggests that studying skills from case studies may prove

more useful to understand predictability mechanisms than

computing average skill from numerous start dates.

Keywords Decadal climate predictability � Atlantic

meridional overturning circulation � Diagnostic and

prognostic potential predictability � Ocean and climate

dynamics

1 Introduction

In contrast to both weather and seasonal forecasts, decadal

prediction is still a developing science. The ocean is

assumed to be among the most predictable component of

the climate system on the decadal timescale as it provides

long-term climatic memory due to its large thermal inertia.

However, there is still no clear understanding of the related

predictability limits (Meehl et al. 2009; Hurrell et al. 2009;

Solomon et al. 2011). Using control data from eleven state-

of-the-art coupled climate models, Boer (2001) showed

that the North Atlantic ocean exhibits the highest potential

predictability at decadal timescales independently of the

model used. Decadal variations of sea surface temperature

(SST) in this region (often referred to as the Atlantic

Multidecadal Oscillation, AMO) are thought to influence

important climatic features, including rainfall over the

This paper is a contribution to the special issue on the IPSL and

CNRM global climate and Earth System Models, both developed in

France and contributing to the 5th coupled model intercomparison

project.

A. Persechino (&)

School of Ocean and Earth Science, University of Southampton,

European Way, Southampton, Hampshire SO14 3ZH, UK

e-mail: a.persechino@noc.soton.ac.uk

J. Mignot � S. Labetoulle � E. Guilyardi

Institut Pierre-Simon Laplace/LOCEAN, Jussieu, Paris, France

D. Swingedouw

Institut Pierre-Simon Laplace/LSCE, Gif-sur-Yvette,

CEA Saclay, Orme des Merisiers, France

E. Guilyardi

NCAS-Climate, University of Reading, Reading, UK

123

Clim Dyn (2013) 40:2359–2380

DOI 10.1007/s00382-012-1466-1



African Sahel, India and Brazil, Atlantic hurricanes and

summer climate over Europe and America (e.g. Pohlmann

et al. 2004; Sutton and Hodson 2005; Zhang and Delworth

2006; Knight et al. 2006; Dunstone et al. 2011). As there is

evidence from climate models that the AMO is linked to

the Atlantic Meridional Overturning Circulation (AMOC)

(Knight et al. 2005), the AMOC has therefore been con-

sidered as a key target for the study of decadal potential

predictability (e.g. Delworth and Mann 2000; Curry et al.

2003; Latif et al. 2004; Collins et al. 2006).

Two methods are commonly used to estimate potential

predictability. In the diagnostic approach, the predictability

(DPP for diagnostic potential predictability) is analysed by

decomposing the variance of a climate variable into a long

timescale component considered as potentially predictable,

and an unpredictable noise component. Previous studies

using this approach for both real and modelled systems

include those of Rowell (1998), Boer (2001, 2004, 2011),

Boer and Lambert (2008), and Hawkins et al. (2011). Fol-

lowing Boer et al. (2001) and using nine models participating

in the first Coupled Model Intercomparison Project (CMIP1),

Boer (2004) found potential predictability of surface air

temperature predominantly over the high latitude oceans on

multidecadal timescales, especially in the North Atlantic. On

shorter timescales, he also found some hints of potential

predictability in the tropical Atlantic, while predictability was

overall limited over land. Boer (2011) extended this analysis

to simulations taking into account different climate change

scenarios and attempted to distinguish between internal and

externally forced potential predictability. Using two different

Atmosphere–Ocean General Circulation Models (HadCM3

and HadGEM1), Hawkins et al. (2011) identified the far

North Atlantic in general, and the North Atlantic Current

(NAC) region in particular, as regions with high potential

predictability. They also found that the potential predict-

ability estimates from the DPP approach for both AOGCMs

have magnitudes comparable to the HadISST observations.

In the second approach, the predictability (PPP for prog-

nostic potential predictability) is estimated prognostically, by

re-running a climate simulation with slightly perturbed initial

conditions (ICs). This approach does not compare to obser-

vations directly, and only assesses the ability of the modelled

climate to reproduce itself given an amount of uncertainty on

ICs, representing for example the atmospheric noise. These

experiments are thus often called ‘‘perfect ensemble’’

experiments. Predictability studies using such an approach

began with Griffies and Bryan (1997), who suggested that

SST variation patterns in the North Atlantic are potentially

predictable on multidecadal timescales. Similar studies fur-

ther demonstrated potential predictability in AMOC varia-

tions and related oceanic and atmospheric fields at the decadal

timescale (e.g. Collins 2002; Collins and Sinha 2003;

Pohlmann et al. 2004; Collins et al. 2006; Hurrell et al. 2009;

Msadek et al. 2010). For instance, the results from Msadek

et al. (2010) indicate that the AMOC is potentially predictable

up to 20 years, and, depending on the initial conditions, there

are even some hints of potential predictability for more than

50 years into the future according to Collins and Sinha

(2003). Both studies compute their predictability using

slightly different definitions of root mean square error and

consider that predictability is lost when the error reaches a

certain threshold. Using the same model as Collins and Sinha

(2003), Hermanson and Sutton (2009) follow a different

approach and find lower predictability for the AMOC (with

an average of only 5 years). It is therefore important to

carefully define predictability and to use several metrics to

better understand the limit and extent of predictable fields.

Although there have been an increasing number of studies

on decadal predictability of the climate system in the last few

years due to the impetus of the ‘‘near term’’ CMIP5 protocol

(Taylor et al. 2009), the assessment of decadal climate pre-

dictability studies remains unclear as the level of predict-

ability differs from one study to another (e.g. Meehl et al.

2009). This may be subject to model differences and uncer-

tainties, as well as differences in the experimental protocol

and metrics used. Here, we explore the decadal predictability

of the AMOC and associated oceanic and atmospheric fields

as they are represented in the IPSL-CM5A-LR model (Duf-

resne et al. 2012) under pre-industrial control conditions,

using both DPP and PPP approaches. The aim of this study is

to address the following questions: (1) Where do climate-

related fields exhibit the strongest sensitivity to decadal

AMOC fluctuations in the model? (2) Are specific changes in

the AMOC potentially predictable and which observations of

the ocean state are likely to be of greatest value to constrain

predictions? (3) What is the predictability of the Atlantic

climate in the model and how is it related to low-frequency

AMOC variability?

After the description of the methods and the model in the

next section, the control simulation is analysed in Sect. 3 to

illustrate the impact of decadal AMOC fluctuations on the

Atlantic Climate. In Sect. 4, the potential predictability of

the AMOC is investigated using ‘‘perfect ensemble’’

experiments. Section 5 addresses the potential predictabil-

ity of climate and its link with decadal AMOC variability.

A summary and a discussion end the paper in Sect. 6.

2 Methods and experimental setup

2.1 Methods for measuring predictive skills

2.1.1 Diagnostic potential predictability (DPP)

The DPP approach uses the method of analysis of vari-

ance (Madden 1976; Rowell 1998) to examine the
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low-frequency variability (considered to be at least poten-

tially predictable) of a given variable. As an estimate of

DPP, we used the non-biased estimation of potential pre-

dictability variance fraction (ppvf) from Boer (2004) that

attempts to separate the long-term variability from internal

variability. This metric is described in detail in Appendix 1.

This approach is an easy and cheap statistical way to

estimate the spatio-temporal predictability of climate-

related fields. Its power lies in the fact that it only relies on

a long control simulation.

2.1.2 Prognostic potential predictability (PPP)

The PPP approach consists in performing ‘‘perfect

ensemble’’ experiments with a single coupled model by

perturbing the ICs. The initial perturbation is supposed to

represent atmospheric chaotic noise or uncertainty in the

estimation of the climate state (e.g. Collins and Sinha 2003;

Pohlmann et al. 2004; Msadek et al. 2010). This approach

represents an estimate of the upper limit of predictability

based on having a perfect model and near perfect knowl-

edge of the current state of the climate system (principally

the state of the ocean). Although this situation is never

likely to be achieved in practice, this approach is useful in

identifying explicitly the climate predictability over a

specific climate trajectory.

Practically, both the spread and the correlation of the

members of each ensemble are useful and important tools to

quantify the reproducibility and thus predictability of the

simulated fields. In this study, we thus consider two deter-

ministic measures (following the Assessment of Intrasea-

sonal to Interannual Climate Prediction and Predictability

report, National Research Council 2010): the Ensemble

Spread (ES) and Ensemble Correlation (EC). These two

metrics are described in detail in Appendix 1. Note that EC

alone does not indicate whether the forecast values are of the

right magnitude (contrarily to ES). In the same way ES alone

does not indicate the direction of the deviations (contrarily to

EC). Thus, in this study, we explore the information given by

both metrics, and consider that a variable is potentially

predictable if it has a (low) statistically significant ES (below

the saturation level which is defined as the control Root Mean

Square Error RMSE, see Appendix 1 for further details)

associated with a (high) statistically significant EC. By

combining these two metrics, we are in good agreement with

Hawkins et al. (2011) who claim that prediction skills should

be measured using more than one metric. However, it has to

be kept in mind that, as will be illustrated below, combining

these two metrics might be too restrictive in some situations,

and that information given by ES or EC alone should not be

neglected.

Both these metrics have to be computed with respect to

a target, a state that we wish to predict. At least two

definitions of this target have been proposed in the litera-

ture: (1) the ensemble mean (e.g. as in Msadek et al. 2010,

hereinafter M10) or (2) each individual member succes-

sively (e.g. as in Collins and Sinha 2003, hereinafter

CS03). As demonstrated in Appendix 1, ES computed with

each definition only differs by a factor of proportionality.

Both definitions are thus equivalent for this metric. In

contrast, no such relationship of proportionality could be

found for EC. Here, we will therefore consider these two

definitions to evaluate possible differences in their

respective scores of PPP.

2.2 Model configuration and simulations

2.2.1 Brief model description

We use the coupled model IPSL-CM5A-LR (http://icmc.

ipsl.fr/model-and-data/ipsl-climate-models/ipsl-cm5, Duf-

resne et al. 2012) in which the atmospheric general circu-

lation model LMDZ5A (Hourdin et al. 2012) incorporating

the ORCHIDEE land-surface model (Krinner et al. 2005) is

coupled with the oceanic module NEMOv3.2 (Madec

2008), that includes the sea ice model LIM-2 (Fichefet and

Maqueda 1997), and the oceanic bio-geochemistry model

PISCES (Aumont and Bopp 2006). The coupling between

oceanic and atmospheric models is achieved using OASIS3

(Valcke 2006). The atmosphere has a regular horizontal

grid with 96 9 96 points corresponding to a resolution of

1.9� 9 3.75�, and 39 vertical levels. The ocean model runs

with an irregular grid of 182 9 149 points (ORCA grid)

corresponding to a nominal resolution of 2�, enhanced over

the Arctic and subpolar North Atlantic as well as around

the Equator. There are 31 vertical levels for the ocean with

the highest resolution in the upper 150 m.

2.2.2 Control integration

Our study is based on a 1000-year control simulation. The

initial state was taken at the end of more than 400 years run

in coupled mode, itself started from several hundreds of

years of simulations of land and ocean carbon component

separately to equilibrate the carbon pools (see Dufresne

et al. 2012 for details). The simulation uses constant pre-

industrial boundary conditions of tropospheric greenhouse

gases and aerosol concentrations, and constitutes the pre-

industrial control simulation of the IPSL-CM5A-LR model

used for the CMIP5 exercises. The DPP approach only

relies on this control integration.

2.2.3 ‘‘Perfect ensemble’’ experiments

The core of the PPP approach is a series of five ensemble

experiments using the same code as the control integration

Climate in the IPSL-CM5A-LR model 2361
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described above. Each ensemble starts from a different

date of the control simulation and it includes 10 members,

started from slightly different ICs and integrated for

20 years. ICs of the different members are obtained here

by perturbing the SST from the control simulation with an

anomaly chosen randomly for each grid point in the

interval (-0.05 �C, 0.05 �C) with an equiprobable distri-

bution for each value over this interval. This perturbation

mimics a non-Gaussian white noise perturbation. No

perturbation has been applied for the grid points under

sea-ice cover. Figure 1 shows the five different starting

dates of each ensemble experiment together with the time

series of the AMOC index from years 1870 to 2200 in the

control integration. One experiment starts from a year

corresponding to relatively weak AMOC conditions

(hereafter W, year 1901), one from intermediate condi-

tions (hereafter I, year 2171), and one from strong con-

ditions (hereafter S, year 2071). We have also chosen to

start some experiments respectively 5 and 15 years before

the large AMOC maximum in 2071 to investigate how far

ahead this extreme value can be captured (15P and 5P,

starting dates 2056 and 2066, respectively). Note that

other choices could have been made and because of the

limited number of starting dates, this experimental set

up was not designed to draw robust conclusions about

a possible predictability-dependence on the AMOC ini-

tial state. It could nevertheless give useful indications

about it.

3 Fingerprints of AMOC variability

In the IPSL-CM5A-LR model, AMOC variability has been

associated with a 20-year cycle described as a coupled

mode driven by the subpolar region, and involving deep

convection in the Nordic Seas, at the southern tip of

Greenland, and south of Iceland (Escudier et al. 2012).

Prior to the study of potential predictability in the AMOC,

the regional impacts of AMOC variability are investigated

in the control integration. To do so, we use regressions of

5-year moving averaged surface temperature and precipi-

tation onto the 5-year moving averaged AMOC index when

this latter leads by 10 years (lags at which regression

coefficients are the strongest, Fig. 2). Despite some sig-

nificant signals in the tropical Pacific, the main significant

impacts are restricted to the North Atlantic surrounding

regions. We therefore concentrate on this basin in the

following.

3.1 Impacts on surface temperature

Figure 2a shows that the AMOC impact on temperature at

the decadal timescale is dominant over the ocean, and in

particular north of the NAC. Anomalously strong AMOC

conditions are associated with significantly warm SST

anomalies in the subpolar gyre, in both the eastern and

southern branch of the subtropical gyre, and cold SST

anomalies along the eastern coast of Greenland, south of
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Fig. 1 Time series of AMOC

index from year 1870 to 2200

with starting points of ‘‘perfect

ensemble’’ experiments shown

as coloured points. The

1000-year mean is shown as the

grey thick line and the

corresponding standard

deviations are shown as the grey
dashed lines
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the Denmark Strait and in the Norwegian Sea, with a

typical amplitude of about 0.5 �C Sv-1. SST anomalies

from the tropics to the subpolar regions in the Northern

Hemisphere remain predominantly positive in constrast to

the Southern Hemisphere where there are some hints of

negative anomalies. Under anomalously strong AMOC

conditions, an interhemispheric SST dipole pattern

(although weak) therefore seems to emerge, as also iden-

tified in HadCM3 (Vellinga and Wu 2004). This pattern is

also consistent with the AMO pattern in IPSL-CM5A-LR

(Gastineau et al. 2012) as well as in an earlier version of

the IPSL model (IPSL-CM4, Msadek and Frankignoul

2009). This suggests that as in other models (Kushnir 1994;

Kerr 2000; Delworth and Mann 2000) an AMO-type

response is associated with decadal AMOC fluctuations in

IPSL-CM5A-LR. The SST pattern, identified in the latter,

also resembles the observed AMO (e.g. Sutton and Hodson

2005), except for the localised significant negative anom-

alies in the high-latitudes of the North Atlantic. This result

is consistent with previous modelling studies that found

decadal AMOC fluctuations to be associated with an SST

pattern resembling the observed AMO (Kushnir 1994; Kerr

2000; Delworth and Mann 2000).

As indicated above, decadal AMOC fluctuations have a

much weaker impact over land. Anomalously strong

AMOC conditions tend to be followed by significantly

warmer conditions in Central America, subtropical Africa,

and a few marine-influenced regions of Western Europe

(with amplitude of anomalies up to ?0.1 �C Sv-1). Such

links over land are consistent with previous studies (e.g.

Pohlmann et al. 2004).

3.2 Impacts on precipitation

In terms of precipitation, the tropical Atlantic ocean

clearly shows strong sensitivity to decadal AMOC fluc-

tuations (Fig. 2b): stronger AMOC conditions are associ-

ated with significantly drier (wetter) southern (northern)

tropics. This suggests a northward shift of the inter-trop-

ical convergence zone (ITCZ) over the tropical Atlantic,

as also identified in other climate models (e.g. Vellinga

and Wu 2004; Swingedouw et al. 2009; Persechino et al.

2012). The ITCZ shift is also seen to extend to the Pacific

Ocean, consistent with Xie et al. (2008) and Swingedouw

et al. (2009). The strong sensitivity of tropical precipita-

tion to AMOC fluctuations probably happens through the

influence of SST anomalies identified earlier (Fig. 2a),

consistent with the well-established strong coupling

between the ocean and the atmosphere in this region (e.g.

Chiang et al. 2008 and references therein). Significant

precipitation anomalies are also found from the subtropics

to the high-latitudes, largely resembling the corresponding

SST anomalies.

The oceanic precipitation signal is again seen to leak

over the adjacent continental areas, as for temperature. At

midlatitudes, strong AMOC conditions are in particular

associated with significantly wetter conditions over the

British Isles (Fig. 2b). The signal identified over the trop-

ical Atlantic also extends over the adjacent continents with

significantly drier (wetter) conditions in the southern

(northern) tropical regions of both America and Africa

when the AMOC is increasing. This is consistent with

several studies that already investigated the link between
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Fig. 2 Lagged regression of the 5-year moving average a surface air

(sea) temperature at ground (sea) level (�C Sv-1), and b precipitation

(mm day-1 Sv-1) onto the 5-year moving average AMOC index at

the lag where regression coefficients are the strongest (i.e. when the

AMOC leads by 10 years). Statistical significance of regression

values has been tested using Student’s t test, and Quenouille’s (1952)

method was used to calculate the effective degrees of freedom. The

grey contour indicates 90 % confidence level for zero correlation
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decadal modulation of Sahelian rainfall, ITCZ shift and the

AMO (Folland et al. 1986; Rowell et al. 1995; Zhang and

Delworth 2006; Knight et al. 2006; Ting et al. 2009).

In view of these major climatic impacts of the AMOC,

an important question remains whether AMOC fluctuations

are potentially predictable. The ability to predict such

fluctuations is now investigated using the PPP approach

described in Sect. 2.2.3.

4 Potential predictability of AMOC fluctuations

Figure 3 shows the AMOC trajectories of each individual

member, for each start date, together with the ensemble

mean. At first sight, all ensemble means follow the initial

control run relatively well, although with less variability

due to the averaging effect. In particular, the extreme

AMOC event at year 2071 is relatively well-captured

(although underestimated in terms of amplitude) by both

experiments starting 15 and 5 years before this peak.

4.1 Are changes in the AMOC potentially predictable?

4.1.1 Comparing the level of predictive skills to different

definitions of metrics

Figure 4 shows ES of the AMOC index as a function of lead-

time up to 2 decades for each experiment and both M10 (in

grey) and CS03 (in black) definitions. This figure confirms the

relation of proportionality mentioned earlier (in Sect. 2.1.2)

between both definitions, with a factor of H[2 M/(M-1)] (M

being the number of members, see Appendix 1 for further

details). The last statistically significant lead-time before ES

persistently exceeds the threshold is independent of the def-

inition used, and represents the maximum lead-time of pre-

dictability as inferred from ES alone. Figure 5 shows EC

computed between lead-time 1 year and varying lead-times,

ranging 5–20 years (5 years corresponding to the minimum

lead-time of predictability found from ES, Fig. 4). EC has

generally higher scores for M10 than for CS03. Indeed, the

ensemble mean (used in M10) is smoother and holds some

information from each member, allowing higher correlations

than one to one correlations among members (as used in

CS03). However, in most cases, when EC is statistically

significant (or not), it is generally also the case for the other

definition. Note two exceptions (experiments W and I).

However, from a predictability point of view, the statistical

significance of EC at the lead-time at which ES saturates

(information given in Fig. 4) is the same whichever the def-

inition used. The main disadvantage of using ECCS03 is that

too much weight could be given to an individual member that

heavily diverges from the others, while ECM10 tends to

average out extremes by the use of the ensemble mean. On the

other hand, the latter can be seen as too lax as it involves a

smoother baseline.

We showed that, overall, both definitions of EC and ES

deliver similar messages, although ECCS03 seems to be

slightly more severe than ECM10. We therefore prefer to

opt for the most cautious/severe definition, and will use the

CS03 definition hereafter.

4.1.2 How far ahead is the AMOC potentially predictable?

Figure 6 shows a summary of results combining both

ESCS03 (Fig. 4) and ECCS03 (Fig. 5) for the AMOC index.

The predictive skill of each experiment is determined by

the maximum lead-time at which ES saturates and its

corresponding EC. Experiment S shows overall the highest

PPP skill as its ES saturates at the longest lead-time and is

associated with a high statistically significant EC (lower-

right plot, Fig. 6); this experiment suggests a limit of

predictive skill for the AMOC index of about 13 years.

This result is consistent with a simple stochastic assump-

tion for example (e.g. Frankignoul and Hasselmann 1977;

Frankignoul 1985), which would predict that when starting

from an extreme AMOC value, we expect most of the

members to take the same direction towards a neutral state,

thereby yielding high predictability. Nevertheless, the

predictability timescale found here is longer than the per-

sistence time estimated from the AMOC index autocorre-

lation function in a red noise framework (e.g. Frankignoul

et al. 2002) which amounts to 4–5 years (not shown). This

indicates that a simple autoregressive model provides low

predictability for AMOC index behavior. Once back

towards neutral (close to the mean) conditions (after about

13 years), experiments S indeed loses its predictive skills

with a continually growing (decreasing) ES (EC) with

lead-time. Similarly to S, experiment W is expected to

have a similar predictive skill since it starts from an

extreme state (more than one standard deviation r away

from the mean, Fig. 3). Although the EC associated with

the maximum lead-time is statistically significant and high

(0.74), ES however saturates twice as rapidly as in

experiment S (at about 7 years, Fig. 6). This lower PPP

skill could be explained by its starting date not being in

such an extreme state as S; indeed, the starting value is

superior (inferior) to 2r in S(W). Alternatively, it might

come from the dynamics itself, suggesting that the AMOC

has more PPP skills when it starts from an anomalously

strong overturning than from a weak one or a value close

to its mean. The fact that the initial state corresponding to

an anomalously strong AMOC is more predictable than

those corresponding to a weak AMOC is in good agree-

ment with several previous studies (e.g. CS03; Collins

et al. 2006). Consistent with the idea that extreme states

are associated with better predictive skills, both

2364 A. Persechino et al.
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experiments I and 15P that start from neutral mean states

have no predictive skills (as defined in Sect. 2.1.2); indeed

EC is not significant for lead-times of 5 to about 15 years

(Fig. 6). However, ES saturates after 5 and 7 years

respectively. Based on ES only, this could still indicate a

weak predictability. The above results suggest that pre-

dictability depends on the AMOC initial state, although the

limited number of experiments limits the robustness of this

claim.

Given the AMOC impact on climate (Fig. 2), the ability

of the model to predict an extremum such as the one of the

year 2071 (Fig. 1) could be of great interest. Such an

ability is identified in experiment 5P, which shows the

second highest predictive skills (after S) with a limit of

predictive skill of about 8 years (that is after the peak has

been captured, Fig. 6). In contrast, strictly speaking,

experiment 15P has no predictive skills (as defined in Sect.

2.1.2). Nevertheless, this experiment still succeeds in

capturing the peak of the year 2071 as seen in the plumes in

Fig. 3, where most of the members exhibit a positive

AMOC anomaly at 15 years lead-time. This feature is

somewhat reflected in the statistically significant EC cal-

culated for a lead-time longer than 15 years (i.e. when the

peak is included). Although Fig. 3 shows that the

amplitude of the peak is not well reproduced, there is some

evidence for the ability of the model to capture an extreme

AMOC event up to 15 years in advance. Note here that,

despite the fact that ES saturates very rapidly and is not

associated with a significant EC, EC alone still gives useful

information about this ability to capture a peak. This

underlines the importance of considering each metric (ES

and EC) separately in addition to their combined infor-

mation, in order to identify interesting features such as

extreme events.

By averaging the maximum lead-time at which ES sat-

urates for the five ensemble experiments, we found an

average saturation level reached after 8 years. Note, how-

ever, that at this lead-time, the average EC amounts to 0.51

which is not significant at the 90 % level when considering

the average number of degrees of freedom over each

starting date (see Appendix 1). Indeed, Fig. 5 and Fig. 6

show that EC strongly depends on the starting date. For

such a limited number of starting dates, it is thus of limited

use for an estimation of the average predictive skill. It

seems therefore reasonable to claim that, based on ES

alone, the average predictive skills of the AMOC is of

about 8 years in the IPSL-CM5A-LR model. Again, this

lead-time is more than the persistence time of the AMOC
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index, confirming an important role of oceanic dynamics

on the predictability of the AMOC.

Figure 6 also brings out some other interesting features

worth pointing out. There is some evidence for both ES and

EC not to be independent metrics, a decreasing (increasing)

ES is generally associated with increasing (decreasing) EC.

This claim is further supported in Appendix 1. There is also

some apparent ‘‘return’’ of predictive skills for both

experiments 15P and 5P. There is, indeed, some evidence

for ES returning below the saturation level and recovering

statistical significant a few years after saturation, with

corresponding EC which also recovers significance. Note

that this increasing of EC is relatively small in 5P (\0.1),

compared to 15P ([0.5); the reason for the significant

increase in this latter is certainly due to its ability to capture

the extreme AMOC event present in the second decade (at

least in terms of its presence and its sign). Although this

apparent ‘‘return’’ of skill has already been pointed out by

several studies, its origin still remains unclear. For exam-

ple, Newman et al. (2003) suggest that this reflects varia-

tions of the actual noise rather than a true skill, while

Hermanson and Sutton (2009) rather suggest that this might

be a consequence of the use of a simple univariate measure

to quantify predictability. Here, it is not to be excluded that

this ‘‘return’’ of skill in the second decade could be related

to the peak of energy at 20 years (as found in the control

simulation, Escudier et al. 2012), which might increase

correlation and then predictability for larger timescale. The

origin of this phenomenon definitely merits further atten-

tion and should be the main focus of further studies.

4.2 An early warning system to predict extreme

AMOC events?

Even though such events are rare and may be viewed as

‘‘surprises’’, providing an early warning system is extre-

mely desirable considering their possible major climatic

impacts. Results above showed clear evidence for the

ability of the model to capture extreme AMOC events.

More specifically experiment 15P gives hope for predicting

such events earlier than the 8-year average predictive skills

identified by the PPP approach. Given the lack of AMOC

observations, we investigate here whether there exist

monitorable precursors to such extreme events and whether

they are themselves predictable. Note that these are likely

to be strongly model-dependent.

As briefly mentioned in Sect. 3, Escudier et al. (2012)

identified a 20-year cycle associated with the AMOC
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variability in the IPSL-CM5A-LR control integration.

Figure 7 shows a simplified schematic of the mechanism

responsible for one half of this cycle. For example,

starting from a positive temperature and salinity anomaly

in the Labrador Sea, the surface mean currents along the

subpolar gyre advect these anomalies of same sign east-

ward. The anomalous salty surface waters favour deep

convection south of Greenland and Iceland along their

path, thereby inducing an AMOC intensification after

9 years, and they eventually reach the Nordic Seas. There,

the associated positive temperature anomaly associated

with the salinity anomaly induces sea ice melting and an

anomalous cyclonic circulation over the Nordic Seas,

which strengthens the East Greenland Current (EGC), and

in turn creates negative temperature and salinity anoma-

lies in the Labrador Sea. This process lasts 10 years, and

the second phase of the cycle begins. Escudier et al.

(2012) found therefore evidence for the EGC intensity

and water properties in the Labrador Sea to be precursors

of changes in the model’s AMOC, with a lead-time of

about 14 years for the EGC and 11 years for the Labrador

Sea salinity.

Using this apparent predictability in a practical way

requires that a large change in the main identified precur-

sors always lead to a corresponding change in the AMOC

index. Figure 8 shows time series of the AMOC index, sea

surface salinity (SSS) in the Labrador Sea and the EGC

index (defined as the southward meridional transport across

the Denmark Strait of waters with a salinity lower than 34

psu) in the control integration for each ensemble with the

corresponding plumes superimposed. It is found that of the

6 identified ‘‘events’’ (represented as letters in Fig. 8), for

which within 5 years at least one of the precursors changes

by more than 2r and the other one by at least 1.5r, 5 are

followed by an AMOC change of the correct predicted

sign, of which 4 show a change larger than 1.5r. This large

change in AMOC occurs about 15 (13) years after a large

change in EGC (SSS in the Labrador Sea). This result is

consistent with the lead-times summarized in Fig. 7, and

therefore illustrates the potential predictive role of these

two variables. Large magnitude of change in precursors

(around 0.9–1.2 Sv and 0.5–0.7 psu) therefore suggests the

potential predictability of extreme AMOC events through

observations of properties in the Labrador Sea and Den-

mark Strait. This also suggests that in the case of extreme

AMOC events, there is the possibility for longer lead-time

of predictability (13 or 15 years, depending on the pre-

dictor) than the average 8 years found earlier (see Sect.

4.1.2). Note that this longer lead-time has previously been

discussed for the experiment 15P alone. Its ability to cap-

ture the peak 15 years later is indeed linked to the state of

its EGC precursor, which is extreme at the beginning of the

experiment (point C, Fig. 8).

Finally, hope for predictability of an extreme AMOC to

go even beyond this suggested decadal lead-time could

arise if these two precursors exhibit in turn some potential

predictability skills. Indeed, both the EGC and SSS in the

Labrador Sea have been found to have some robust pre-

dictability for lead-times up to 9 and 7 years, respectively

(not shown). The possibility of predicting an extreme EGC

event at least 9 years in advance gives hope for the pre-

dictability of an extreme AMOC event beyond 2 decades

ahead, although this has not been tested prognostically.

We therefore found convincing evidence that extreme

changes in the AMOC as seen in the IPSL-CM5A-LR

model might be potentially predictable up to 2 decades

ahead from the monitoring of its high-latitude Atlantic

precursors. Hawkins and Sutton (2008) already found such

a relationship with the HadCM3 model. If a comparable

mechanism to the one identified in the IPSL-CM5A-LR

model (Escudier et al. 2012) occurs in the real ocean,

which remains to be demonstrated (encouraging elements

can be found in Swingedouw et al. 2012), then the ability to

predict AMOC fluctuations is promising for potential pre-

dictability of climate at multi-decadal timescales.

5 Spatio-temporal predictability of Atlantic climate

Potential predictability of both surface temperature and

precipitation is now evaluated using and comparing both

the DPP and PPP approaches. As mentioned in Appendix 1,

a threshold for ‘‘useful’’ potential predictability is often

hard to define in the DPP approach, as it only relies on a

long control integration. On the other hand, it remains a

cheap (in terms of computation time) and easy way to

evaluate average predictive skills from long time series.

This differs from the PPP approach which is much more

expensive, but better evaluates the growth of perturbations

in ICs and therefore the effective predictability within

models. Given a choice of starting date, this approach can

also illuminate the link between temperature and precipi-

tation predictability and the AMOC.

5.1 Potential predictability of surface temperature

Figure 9 shows predictability maps of Atlantic surface

temperature up to 1 and 2 decades as identified by both the

DPP and PPP approaches in the IPSL-CM5A-LR model.

For the former approach, the maps show the ppvf for 10 and

20-year means and are shown in Fig. 9a. For the PPP

approach, regions combining surface temperature with both

statistically significant EC and ES statistically smaller than

the saturation level at the considered lead-time (i.e. regions

potentially predictable as defined in Sect. 2.1.2) are shown

in Fig. 9b as a function of the number of experiments for
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which these conditions are met. Note that only the lead-

time 0–10 years and 10–20 years are considered

respectively.

Over the ocean, the regions of highest (more than half of

the experiments) predictive skills at both 1 and 2 decades

identified by the PPP approach coincide to some extent

with those of highest ppvf scores (for which 10–40 % of

the variance is in the considered decadal band, Fig. 9a).

These regions mainly include the convection sites (as

identified by Escudier et al. 2012) together with the NAC

path, and are in good agreement with results from the

diagnostic multi-model predictability studies of Boer

(2004) and Boer and Lambert (2008). The PPP approach

also brought some hints of potential predictability (less

than half of the experiments) for the two timescales in

regions including the southeastern branch of the subtropi-

cal gyre and the tropics (more specifically the western deep

tropics up to 1 decade extending to the northern western

tropics up to 2 decades). These two regions are also iden-

tified by the DPP approach, although some discrepancies

are present in the tropics; up to 2 decades, strongest signals

are identified in the southern tropics rather than in the

northern tropics. Interestingly, these regions of weak sig-

nals (i.e. the southeastern branch of the subtropical gyre

and the tropics) are each identified in experiments

including the extreme AMOC event of 2071, namely in

experiment 15P and S mainly over 2 decades (see

Appendix 2). Although it remains difficult to draw robust

conclusions from the limited number of experiments, this

suggests that an extreme AMOC event might favor the

potential predictability of these regions. However, the

reason for the weak scores in these regions in 5P remains to

be clarified.

In general, in both approaches, potential predictability

over land is less significant than over the ocean. It is found

over the coastal areas bordering some of the potentially

predictable oceanic regions (that mainly include the mari-

time-influenced regions of western Africa, the western

coast of the Iberian peninsula, and the northern coasts of

the British Isles and South America), and it seems to be

favored by extreme AMOC events (see Appendix 2). The

DPP approach identifies additional land areas located fur-

ther away from the coast (i.e. in Europe, in both the African

and South American continents). Note, however, that these

additional land areas are regions of low ppvf values

(ppvf \ 0.1, Fig. 9a).

Finally, the evidence of a relationship between the

potential predictability of surface temperature and the

AMOC is due to the fact that the major regions identified as

potentially predictable by both approaches, are also

Fig. 7 Schematic view of

mechanisms responsible for one

half of the decadal AMOC cycle

in IPSL-CM5A-LR. Items in red

are actively involved in the

20-year cycle. T’ stands for

upper ocean temperature

anomaly, S’ for upper ocean

salinity anomaly. EGC is the

East Greenland Current and

SLP the sea level pressure.

Starting from a positive

temperature and salinity

anomaly, the signs in the red
boxes indicate the sign of the

correlation among items, and

the number in the square black
boxes the time lag in years.

Items in green are periodically

perturbed by the 10-year cycle

but not actively taking part in its

generation. The signs and the

number of years denote

correlation and time lags as

above (Adapted from Escudier

et al. 2012)
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remarkably similar to the regions significantly sensitive to

decadal AMOC fluctuations (as shown in Fig. 2a).

5.2 Potential predictability of precipitation

Potential predictability of precipitation (Fig. 10) is con-

siderably smaller than for surface temperature, in good

agreement with the multi-model approach of Boer and

Lambert (2008). Similar to the latter study, the Nordic Seas

are the most prominent regions where precipitation seems

to be predictable at both timescales. There are also some

patches of predictability over the subpolar gyre in both

approaches. Note that the DPP approach identifies addi-

tional regions (both oceanic and continental) mainly over

the tropics (Fig. 9b). As for surface temperature, these

additional regions have low ppvf values. Furthermore, as

for regions of weak signals for surface temperature, regions

identified by both approaches appear in experiments

including the extreme AMOC state of the year 2071

(experiments 15P and S, see Appendix 2).

Similarly to surface temperature, the evidence for a link

between an extreme AMOC event and predictability of

precipitation in the above identified regions is due to the

fact that they are also regions sensitive to decadal AMOC

fluctuations (as shown in Fig. 2b). These results suggest the

mechanisms responsible for climate predictability to be

strongly linked to the mechanisms behind decadal AMOC

variability. Note, nevertheless, that this link between

regions potentially predictable and those sensitive to dec-

adal AMOC fluctuations is less clear for precipitation than

for temperature, and this could also explain the weaker PPP

skills in precipitation in the tropical and subtropical

regions, given our experimental set-up for the prognostic

approach largely focused on specific AMOC events.

6 Summary and discussion

6.1 Potential predictability of the AMOC

The predictive skills of the AMOC index have been

quantified by the prognostic (PPP) approach for five

experiments starting from different AMOC initial states,

using both the ensemble spread (ES) and the ensemble

correlation (EC). In most cases, ES (EC) increases

(decreases) with lead-time, and hence predictability is lost

after a certain lead- time. In some cases, an apparent

‘‘return’’ of skill is detected a few years after saturation.

This has to be interpreted carefully as it could simply

reflect noise rather than predictability (e.g. Newman et al.

2003). Our experiments showed that it could nevertheless

also be related to the large variability of the AMOC at the
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20-year timescale found in the control simulation (Escudier

et al. 2012). EC was found particularly useful to detect

such features in the simulations.

It is difficult to determine average predictability skills in

the perfect model experiments as it implies averaging skills

over several starting dates which themselves have very

different predictability skills. Nevertheless, it seems rea-

sonable to claim that the modelled AMOC has an average

predictive skills of 8 years in the IPSL-CM5A-LR model,

when considering the average lead-time at which ES

saturates. The corresponding EC averaged over all starting

dates is not significant. Note that the AMOC index has also

been found to have a persistence time (estimated from the

AMOC index autocorrelation function in a red noise

framework) of about 4–5 years, which is less than the

average predictive skills found here. This suggests a role of

the oceanic dynamics in this predictability. This average

lead-time of predictability of the AMOC index found in the

IPSL-CM5A-LR model is shorter than those identified in

most similar published studies, for which the predictability
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Fig. 9 Potential predictability of surface temperature in the Atlantic

sector identified by: a the DPP approach showing maps of the

internally generated decadal ppvf for 10-year (left panel) and 20-year

(right panel) means in the unforced control climate of IPSL-CM5A-

LR (the colored areas are significant at the 95 % level according to a

F-test); b the PPP approach showing maps of the number of starting

dates (out of 5) where grid points are potentially predictable (i.e.

where it combines both statistically significant EC at the 90 %

confidence level according to a student test and normalized ES

smaller than saturation level at the 95 % level according to a F-test)

up to one (left panel) and two (right panel) decades
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lead-time could reach 2 decades ahead (e.g. CS03; M10;

Pohlmann et al. 2004; Collins et al. 2006). It is, however,

somewhat in agreement with Teng et al. (2011) who found

the AMOC to be predictable for only one decade in the

CCSM3 model. Hermanson and Sutton (2009) identified a

shorter lead-time in the HadCM3 model, with an average

predictive skill of about 5 years. The IPSL-CM5A-LR

model belongs to the middle-range of timescale of AMOC

predictive skills identified so far in the literature. Such as

comparison with existing studies should, however, be

considered carefully because of the many differences in the

experimental protocol used among predictability studies.

When considering the predictive skills of each ensemble

experiment separately, there is evidence for predictive

skills to depend on the AMOC initial state. Indeed, the

highest skills have been found (in descending order) in the

experiments starting (1) from a strong AMOC initial state

(up to 13 years), (2) 5 years before a maximum peak (up to

8 years) and (3) from a weak AMOC initial state (up to

7 years). In contrast, no predictive skills (as defined in

Sect. 2.1.2) have been found for experiments starting from

an intermediate AMOC initial state and 15 years before a

maximum peak. This is essentially because the ensemble

correlation rapidly becomes insignificant. Based on ES

alone, these starting date could be considered as being

predictable 7 and 5 years ahead respectively. Nevertheless,

generally, predictive skills have therefore been identified

for experiments starting or nearly-starting from an extreme
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Fig. 10 Potential predictability of precipitation in the Atlantic sector as defined in Fig. 9

2372 A. Persechino et al.

123



AMOC state. The above results also suggest better pre-

dictive skills for an initial state corresponding to an

anomalously strong AMOC than those corresponding to a

weak AMOC, in good agreement with the perfect model

studies of CS03 and Collins et al. (2006). However, the

number of members (10) for each experiment is somewhat

low to fully assess the robustness of such an impact of the

AMOC initial state on its predictability. Note furthermore

that, although no predictive skills (as defined from both EC

and ES) have been identified in the experiment starting

15 years before a peak, this specific experiment still

showed the ability of the model to capture relatively well

an extreme AMOC event on a longer lead-time than the

average one identified by the PPP approach.

In view of the major climatic impact induced by such

extreme events, the development of an early warming

system would be of great value. The present study shows

that this is made possible through the monitoring of the

high-latitude precursors of the AMOC in this model

(which are the EGC and the upper-ocean properties in the

Labrador Sea), which leads to an increase in predictive

skills of extreme AMOC events up to 2 decades ahead. The

perspective of an early warning system of such events thus

motivates the monitoring of the EGC strength and water

properties in the Labrador Sea. In this perspective, obser-

vation programs across e.g. the WOCE-AR7/A1 section

for the Labrador Sea (http://cchdo.ucsd.edu/atlantic.html)

and the East Greenland shelf and slope of south of Den-

mark Strait (Brearley et al. 2012), as well as the main-

tenance of mooring arrays in these areas, are likely to be

of greatest added value to constrain prediction of the

AMOC. Similar observational targets have also been

pointed out by Hawkins and Sutton (2008) using the

HadCM3 model.

6.2 Potential predictability of the North Atlantic

climate

Changes in the AMOC have been found to have significant

and widespread climate impacts. The prospect for pre-

dictability of decadal AMOC fluctuations is therefore

promising for potential predictability of climate. This latter

has been investigated using both diagnostic (DPP) and PPP

approaches. They give overall very similar results, and

strongly agree on the regions that exhibit the highest pre-

dictive skills. Some discrepancies, nevertheless, arise for

regions where only some hints of predictability have been

identified. Indeed, these regions are often larger in the DPP

approach than in the PPP approach. In other words, the

DPP estimation seems less discriminant. To strengthen the

robustness of our results, note that the regions claimed to

have some hints of predictability below are regions iden-

tified by both the DPP and PPP approaches.

The far North Atlantic (that includes the convection sites

of the model and the NAC path) has been identified as the

region exhibiting the highest predictive skills. Surface

temperature is potentially predictable up to 2 decades in

advance there, in good agreement with previous studies

(e.g., Collins 2002; Boer 2004; Pohlmann et al. 2004;

Hawkins et al. 2011; Branstator et al. 2012). Note that this

ability to predict the North Atlantic subpolar gyre also

gives hope for potential multi-year forecast of tropical

storm and hurricane frequency (Smith et al. 2010). Some

hints of potential predictability are also identified at this

timescale in the subtropics (mainly over the southern part

of the eastern branch of the subtropical gyre) and the tro-

pics (mainly over the north western tropics). The predict-

ability found in the latter region is clearly different from

results of Pohlmann et al. (2004) in the ECHAM5-MPI/OM

climate model, and also contrasts with Collins (2002), who

found signals only up to the interannual timescales in the

tropics in HadCM3. To some extent our result, however,

agrees with Hawkins et al. (2011) who also found decadal

predictability in the tropics in the HadCM3 model, but only

up to 1 decade ahead and restricted to the southern tropics.

Land areas display little potential predictability compared

to oceans. Potential predictability at decadal timescales is

generally restricted to the coastal areas bordering some of

the oceanic regions identified above; they mainly include

the coast of western Africa, the western coast of the Iberian

peninsula, both the northern coast of the British Isles and

South America. Signals over maritime Europe as identified

by Boer and Lambert (2008) and Pohlmann et al. (2004)

are not brought out as clearly in our study. Although

potential predictability is largely absent for precipitation

(as noted by Pohlmann et al. 2004; Boer and Lambert

2008; Boer 2011 in particular), there are some hints of

potential predictability up to 2 decades over the convection

sites of the Nordic Seas and the subpolar gyre.

Similarly to the AMOC, regions with weak but significant

predictability (i.e. the tropics and subtropics for temperature,

the Nordic Seas and subpolar gyre for precipitation) seem to

depend at least partly on the AMOC state. Results suggests

that extreme AMOC events might favor the potential pre-

dictability of regions of weak signals, as the latter are in most

cases identified when the predicted time-period includes

such events. Although the origin of a possible link between

climate predictability and extreme AMOC still needs to be

clarified, the likelihood for such a link is strengthened by the

fact that regions identified as potentially predictable (for both

surface temperature and precipitation) are also all strongly

influenced by decadal AMOC fluctuations. This suggests

that the mechanisms responsible for climate predictability

are to some extent linked to the decadal AMOC variability.

More research to understand the specific mechanisms that

lead to predictability is, however, still needed. The present
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study nevertheless underlines that the potential predictability

of the AMOC could therefore lead to significant decadal

predictability of climate (where the AMOC has a sufficiently

strong impact), and may therefore be of economic and

societal importance (e.g. Meehl et al. 2009).

6.3 Evaluation of predictive skills

Different definitions of predictability, different experi-

mental protocols and metrics have often been used among

the previous studies to evaluate predictive skills. It there-

fore remains difficult to estimate the weight of the metrics

on the level of predictability found here in the IPSL-

CM5A-LR model by comparing this level to those found in

previous studies. Nevertheless, from a methodological

point of view, our study still puts forward some interesting

results regarding the evaluation of predictive skills.

Regarding the prognostic approach, we showed that

combining ES and EC should be preferred in principle but

it is sometimes difficult to apply in practice. For the

evaluation of average predictive skills, EC was found

insignificant. In the case of 15P, it reduced the quantifi-

cation of predictability skill for weak lead-times but greatly

helped to highlight the ability of the model to capture the

late peak. We thus still claim that both metrics should be

considered in parallel. Our results also suggest that con-

sidering either the ensemble mean of an experiment or each

individual member as a baseline in the calculation of both

metrics does not affect the overall results.

As already mentioned, both diagnostic and prognostic

approaches generally brought out the same main features

concerning both temperature and precipitation predict-

ability. Marginal discrepancies concerned the regions of

weak signals. Because of the difficulty to define a ‘‘useful’’

threshold of potential predictability in the DPP approach,

the PPP approach allows more detailed analysis. It however

relies on the subjective choice of starting dates, number of

members and experiments. Despite the limited number of

experiments starting with similar AMOC states, another

aspect brought out by the PPP approach is that both the

AMOC and some regions might have higher predictive

skills under specific initial states, often when the predicted

time period includes an extreme AMOC. This result needs

to be confirmed by further work. Although reliable esti-

mates of skill conditional on specific initial states are dif-

ficult to determine (due to the small sample for

verification), more systematic experiments starting with

similar initial states (i.e. weak, intermediate, strong, just

before a peak) should therefore be undertaken. It could

even be extended to further scenarios such as starting just

after a peak. Note that, this dependence on initial states

already exists with seasonal-to-interannual climate fore-

casts dependent on the phase of El-Niño Southern

Oscillation (e.g. Chen et al. 2004), and it is expected to be

the case with decadal predictions (Griffies and Bryan

1997). The present study suggests that forecasts starting

from an extreme phase of natural internal variability can be

more skillful than those starting from average conditions.

In that sense, studying skill from case studies may prove

more useful to understand predictability mechanisms than

computing average skill from numerous start dates as done

in most previous studies.

It is also important to bear in mind that here we have

assessed the upper limit of both the AMOC and climate

predictability as both perfect model and near perfect

knowledge of the current state of the climate system are

assumed. Indeed, climate models still have significant

biases compared to observations, and their possible impacts

on the level of predictability skill of a model cannot be

ignored. As an illustration, Branstator et al. (2012) found

that, using six state-of-the-art AOGCMs, the average lead-

time of predictability for subsurface temperature (espe-

cially in the North Atlantic) varied considerably between

the models highlighting how poorly the North Atlantic

predictability must be represented in some, or perhaps all,

of the six models. Therefore, bearing in mind the possible

impact of the limitations of the IPSL-CM5A-LR model, its

lack of deep convection in the Labrador Sea (Swingedouw

et al. 2007) might well affect the effective level of pre-

dictability skill. This problem should be addressed in future

work. The 20-year variability cycle in the subpolar North

Atlantic in the model also greatly influences the present

results and its occurrence in the real world further needs to

be assessed. The possibility that lower predictability limits

would arise in a real predictive system with this model

cannot be ruled out (see Swingedouw et al. 2012). How-

ever, to the extent that both diagnostic and prognostic

approaches are appropriate measures of skill, the present

results give some indications as to where and to what

extent skillful decadal forecasts might be possible.
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Appendix 1: diagnostic potential predictability (DPP)

approach

The DPP approach attempts to quantify the fraction of

long-term variability (considered as predictable) as com-

pared to the internal variability (considered as chaotic and

unpredictable). The long-term variability that rises above

this noise is deemed to arise from processes operating in
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the physical system that are assumed to be, at least

potentially, predictable. Boer (2004) defined the potential

predictability variance fraction (ppvf) as an estimate of

DPP. Here, we use its non-biased estimation (see Boer

2004 for further details) defined as:

ppvf ¼
r2

N � 1
N r2

r2
ð1Þ

where rN
2 represents the variance of N-year means, and r2

represents the interannual variance of the variable X con-

sidered. The ppvf varies between 0 and 1; a ppvf close to 0

implies no long-term variability and thus no potential

predictability. Conversely, ppvf close to 1 implies large

predictability. Statistical significance of ppvf is judged

using a F-test at the 95 % confidence level. A threshold for

‘‘useful’’ potential predictability is however hard to define,

as it is likely to be purpose and situation dependent.

Nevertheless, it remains an easy statistical way to estimate

the average predictive skill in a model.

Prognostic potential predictability (PPP) approach

Prognostic predictability studies consist in performing

ensemble experiments with a single coupled model by

perturbing the initial conditions (ICs) supposed to represent

atmospheric chaotic noise or uncertainty in the present

climate state. Ensemble Correlation (EC) and Ensemble

spread (ES) are the two deterministic measures used here to

quantify the predictability of the simulated climate.

Ensemble correlation (EC)

In the forecast framework, correlation addresses the ques-

tion: ‘‘to what extent are the forecasts varying coherently

with the observed variability?’’. In the ‘‘perfect ensemble’’

approach, the definition of ‘‘observed variability’’ differs

from one study to another: it can refer to the variability of

the ensemble mean (i.e. the average of all members for an

individual ensemble) as in Msadek et al. 2010 (M10) or to

the variability of an individual member as in Collins and

Sinha 2003 (CS03). In other words, in the M10 approach,

predictability skill is evaluated by correlating each member

of the ensemble to the ensemble mean whereas in the CS03

approach each member is correlated to each other. If M is

the number of members, we therefore obtain M (resp.

M(M-1)/2) individual correlations for M10 (resp. CS03).

Independently of the approach used, the formula for the

individual correlation of any pairs p is:

rp ¼
T
Pt¼T

t¼1 AtBt

� �
�
Pt¼T

t¼1 At

Pt¼T
t¼1 Bt

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
Pt¼T

t¼1 A2
t �

Pt¼T
t¼1 A2

t

� �� �q
T
Pt¼T

t¼1 B2
i �

Pt¼T
t¼1 Bt

� �2
h i

ð2Þ

where T is the number of years over which we want the

correlation for, and A and B are the members forming the

pair p. Once the individual correlations of all pairs have

been calculated (M pairs for M10, M(M-1)/2 pairs for

CS03), EC of the ensemble is computed as the mean of all

individual correlations through a Fisher Transformation

(Fisher 1921). We will consider the two definitions

presented above to evaluate possible differences in their

respective score of predictive skills. Statistical significance

of the resulting EC is judged using a one-tailed Student’s

t-distribution test at the 90 % confidence level with degree

of freedom corresponding to the average degree of freedom

of all individual correlations. The degree of freedom of

these latter takes into account the persistence in the two

timeseries following Bretherton et al. (1999). In order to

gain confidence in the estimation of the EC significativity,

we also evaluated its significance by using the ‘‘field

significance’’ approach (e.g. Livezey and Chen 1983). The

statistical significance of EC obtained with this test is very

similar to the ones obtained from the average degree of

freedoom of all individual correlations.

Ensemble spread (ES)

ES or Root Mean Squared Error RMSE or again the Mean

Squared Skill Score MSSS (as defined by the US CLIVAR

working group on Decadal Predictability, http://clivar-

dpwg.iri.columbia.edu) addresses the question: ‘‘how large

are the typical errors in the forecast (among members)

relative to those implied by baseline?’’. Consistently with

EC, we consider the two definitions of the baseline which

arise from the literature: for a given lead-time LT, ES of an

ensemble of individual members i is defined respectively

as:

ESM10ðLTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M

XM

i¼1

ðXiðLTÞ � �XðLTÞÞ2
v
u
u
t ð3Þ

ESCS03ðLTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

MðM � 1Þ
XM

i¼1

XM

j¼iþ1

ðXiðLTÞ � XjðLTÞÞ2
v
u
u
t

ð4Þ

where we define: �XðLTÞ ¼ 1
M

PM
i¼1 XiðLTÞ

We demonstrate below that there actually exists a rela-

tionship of proportionality between (3) and (4). Let con-

sider the two following definitions of Mean Squared Error:

EM10 ¼
1

M

XM

i¼1

ðXi � �XÞ2 ð5Þ

ECS03 ¼
2

MðM � 1Þ
XM

i¼1

XM

j¼iþ1

ðXi � XjÞ2 ð6Þ
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By expanding ðXi � �XÞ2 in (5) and after a few

rearrangements we show that:

EM10 ¼ X2 � �X2 ð7Þ

Then, if we introduce:

E ¼ 2

MðM � 1Þ
XM

i¼1

XM

j¼1

ðXi � XjÞ2 ð8Þ

We show by a recurrence reasoning that:

E ¼ 2ECS03 ð9Þ

By expanding (Xi - Xj)
2 in (8) and after a few

rearrangements, we show that:

E ¼ 4

M � 1
ðX2 � �X2Þ ð10Þ

By combining (7), (9) and (10), we obtain the following

relationship:

ECS03 ¼
2M

M � 1
EM10 ð11Þ

Therefore

ESCS03ðLTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2M

M � 1

r

ESM10ðLTÞ ð12Þ

And there exists a factor of proportionality
ffiffiffiffiffiffiffiffi
2M

M�1

q

between the ensemble spread of both CS03 and M10

definitions.

Generally, the trajectories of individual members

diverge with time and thus ES increases with LT. When ES

saturates at the control RMSE, we consider that there is no

more potential predictability: the spread of the forecast is

of similar magnitude as the natural spread of the modelled

climate, and no predictability can be inferred. In CS03

(M10) the control RMSE is defined as rH2 (rH[(M - 1)/

M]), where r is the standard deviation of the control

integration. Statistical significance of ES as compared to

the respective threshold (or control RMSE) is judged using

a F-test at the 95 % confidence level. The maximum LT at

which a variable is said to be potentially predictable is the

last LT before ES persistently exceeds the threshold.

Relationship between ES and EC

We consider here centred and normalized (by the standard

deviation) data in time t.

We consider the CS03 definition of ES and EC:

ES2 ¼ 2

MðM � 1Þ
XM

i¼1

XM

j¼iþ1

ðXiðtÞ � XjðtÞÞ2 ð13Þ

EC ¼ 2

MðM � 1Þ
XM

i¼1

XM

j¼iþ1

corrðXiðtÞ;XjðtÞÞ
 !

ð14Þ

where the discrete time correlation using centred and

normalized data is:

corrðXiðtÞ;XjðtÞÞ ¼
1

T

XT

t¼1

XiðtÞXjðtÞ

We consider the average of ES over the period of time

T: \ES2 [ T ¼ 1
T

PT
t¼1 ES2ðtÞ

By expanding (Xi(t) - Xj(t))
2 in (13) and after a few

rearrangments we can show that:

\ES2 [ T ¼
1

T

XT

t¼1

2

MðM � 1Þ
XM

i¼1

XM

j¼iþ1

ðX2
i ðtÞ þ X2

j ðtÞ

� 2XiðtÞXjðtÞÞ

\ES2 [ T ¼
2

MðM � 1Þ
XM

i¼1

XM

j¼iþ1

1

T

XT

t¼1

X2
i ðtÞ þ X2

j ðtÞ
� �

� 4

MðM � 1Þ
XM

i¼1

XM

j¼iþ1

1

T

XT

t¼1

XiðtÞXjðtÞ

Since the variables are centred and normalized:

1

T

XT

t¼1

X2
i ðtÞ þ X2

j ðtÞ ¼ 2

Hence, we obtain the following result:

\ES2 [ T ¼ 2ð1� ECÞ

For the real case, where the data are not normalized and

centred, which is more appropriate for ES estimation, no

such simple relationship can be found analytically, but we

hypothesize that ES and EC remain related. A few

illustrations of such link are evidenced in the manuscript

(see Sect. 4.1.2) and plead in favour of this hypothesis.

Appendix 2

We present the individual correlation maps for temperature

(Fig. 11) and precipitation (Fig. 12) for each starting date

in the PPP protocol. These individual results are aggregated

in Figs. 9 and 10.
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Fig. 11 Surface temperature.

Colours represent EC computed

as in CS03 for each starting date

and years 1–10 (left panels),

1–20 (right panels) of each

ensemble experiment. Areas

where the correlation is not

statistically significant at the

90 % level are shown in white.

Dots represent grid points where

the ES is statistically

significantly smaller than the

control RMSE at the 95 % level
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Fig. 12 As Fig. 11 for

precipitation
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