
LMDZ Zoom Project 
July-August, 2015 
Nalanda Sharadjaya 
 
Abstract 
 
The purpose of this project was to create an interface through which users could 
experiment with the LMDZ model (http://lmdz.lmd.jussieu.fr/?set_language=en) without 
having to run it through a shell, which would require a certain degree of familiarity with 
the organization of the model. Users first toggle a set of six parameters which modify the 
zoom (a method by which a certain location on the map can display data in greater detail 
without increasing the total number of squares on the grid), and can then run the model to 
overlay actual data (in this case, temperature) with their preferred zoom. 
 
Methods and Results 
 
The project was coded almost exclusively with Python. The following Python modules 
were used: cgi, cgitb, subprocess, and os.path. In addition to three Python files 
(zoom.py, make.py, and model.py), one small shell program (gcm.sh) was created as 
an intermediate step to call the model, gcm.e. These programs are original and were 
created exclusively for this project, although they use and interact with programs that 
were written by others (such as choix_zoom.sh and gcm.e), which help create the 
desired images. Ferret is the language used to configure the images themselves, based on 
instructions from other files (such as choix_zoom.sh). 
 
The first page, zoom.py, is a simple HTML form which accepts six values: the 
horizontal and vertical ranges of the zoomed area (in kilometers), the central latitude and 
longitude of the zoom, and the resolution of the zoom (in meters). This is what zoom.py 
looks like: 

 



 
Using cgi and cgitb, the second page, make.py, takes these values and creates a 
directory based on them (for example, 4000_4000_80_22_200_200/)  where any and 
all files created for the purposes of this zoom configuration will be stored.  
 
Using a Python module called subprocess, make.py then sends these values to 
choix_zoom.sh, a preexisting file which constructs the zoom and saves it as a .gif 
file in the directory created by make.py, which then displays the image. 
choix_zoom.sh creates two files: one, called zoom.jnl, which displays the contents 
of the Ferret file used to write the image; and two, the image itself, zoom.gif. The 
directory currently looks like this: 
 

 

 
Before creating zoom.gif, make.py uses os.path, a Python module, to check whether 
there is already a zoom.gif inside the specified directory—if so, make.py won’t bother 
creating a new one; it will simply display the existing one in the browser.  
 
The user is then prompted to decide whether they are satisfied with their zoom or not; if 
they are not, they can click on a link to return to zoom.py and try again. Otherwise, they 
can continue on to model.py to overlay the model with their zoom. (The zoom itself is 
displayed on the next page. As you will see, it is centered over India.) 
 

 



 
 
When the user clicks on the link to run the model, model.py uses subprocess to call 
gcm.sh, a small shell file which calls the model itself (gcm.e) and also gives 
instructions for the Ferret journal (.jnl) file which will eventually create the image 
itself. The model will take some time to run, but two new files will eventually be created: 
model.jnl, which will be created as soon as the model has finished, and model.gif, 
which is created by model.jnl. The directory will also contain a file called gcm.out, 
which contains the output of the model throughout its full run. The directory now looks 
like this: 
 

 

 



When the model finishes running, model.py will display this page: 

 
Note the difference in resolution between the zoomed region (hint: the zoom is centered 
around India) and a non-zoomed region like Antarctica or South America: 
 

                                           
 
Both images are 132x132 pixels. 
 



Summary 
 
This program offers users the capability to run the LMDZ GCM model through the web 
even to those not intimately familiar with the model itself, or shell programming.  
 
The project offered me the opportunity to manipulate a climate model in order to 
understand how it works; being able to modify certain parameters and discern the effects 
of those modifications gave me great satisfaction. In addition, I became much more 
familiar with Shell programming (beyond cd and ls) and learned some new Python 
syntax (particularly with regards to the subprocess module, which I used to call all 
non-Python programs). 
 
Beyond syntax, however, this project also taught me some general approaches to 
programming. I learned some techniques for testing code usefully—knowing which cases 
to cover to make sure the code does what it’s supposed to, and knowing what (or where) 
to check when it does not. I also developed an approach to avoid the unnecessary creation 
of duplicate files by having the code check for the existence of a preexisting image with 
the given zoom conditions before running the code to create it (see page 2). This allowed 
me to preset some sample zoom configurations in order to present my project without 
long gaps between each section.  
 
Realizing that running the model would take several minutes, I decided to find a way for 
users to be able to access their image without having to wait for their browser tab to load. 
Initially I thought I could have them input their email through a form and then send them 
their image when it was finally created, but this proved much more complicated than I 
initially thought, so I settled on offering the link to the final image (it would, unless the 
zoom configurations had already been used, be a broken link when the user first clicked 
on it) and instructing them to reload it after a minimum time limit. This was not a 
particularly elegant solution, but under the circumstances it was the most reasonable one I 
could think of. 
 
If I had more time, I would have liked to allow for more configuration—specifically, for 
users to be able to select im and jm values (the number of horizontal and vertical grid 
points, respectively) as well as taux and tauy (values that determine how quickly the 
resolution of the grid changes from zoomed to non-zoomed). At this point, there would 
be ten data points to configure, and using the system of directory nomenclature that the 
code uses right now would have been inconvenient. I may have instead assigned each 
directory an md5 hash (which would be unique) and instructed the user to keep it safely. 
 
I also would have liked to come up with a nicer way of offering the final model.gif to 
the user at his or her own convenience, as opposed to that of the model. Perhaps I would 
have tried harder to get the email feature working, although it seemed a little out of my 
reach at the time. 
 
 
 



Acknowledgements 
 
I would like to thank:  
 
Frederic Hourdin, for coming up with the idea for this project and giving me some of the 
preliminary instructions.  
Marie-Pierre Lefebvre, for providing me with instructions to download the model and get 
it properly running. 
Marie-Alice Foujols, for giving me advice and assistance throughout the course of this 
project. 
Venkatramani Balaji, for the generous (if temporary) donation of his laptop. 
 
Notes from Marie-Alice Foujols, internship supervisor 
 
Nalanda spent 5 weeks with us. First, she helped us during an international scientific 
conference: Our Common Future Under Climate Change, 7-10 July 2015, Paris, France. 
For 3 days, she helped with the organization of more than 5 posters sessions. Second, she 
wrote a useful program regarding LMDZ, IPSL’s atmospheric general circulation model. 
 
A poster session during the conference requires someone to help take posters from 
scientists, use identification numbers to find the location of the poster, to set it up and to 
help scientists to take their posters back once the session was finished. Nalanda 
demonstrated a lot of skills: fast understanding, efficiency, calm, and curiosity. She was 
even able to join a couple of scientific sessions, and she followed talks and could 
summarize them perfectly. 
 
During the second phase of the internship, Nalanda showed us how she likes 
programming. She understood and studied the main difficulties associated with her 
project, proposed pragmatic solutions and wrote efficient and useful programs.  
 
Finally, I want to insist on Nalanda’s qualities. She demonstrates smart and serious skills, 
qualities not so common for such a young girl. I really appreciate Nalanda’s discussion. 
She quickly understands difficult scientific and even ethical concepts. 
 
 


