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ABSTRACT

This paper presents the adaptation of OPA, the LODYC ocean general circulation model,
to distributed memory computers. The parallelization is based on Domain Decomposition
Methods. The local dependencies problem is solved by a lateral boundary operator that exploits
a pencil splitting and an overlapping strategy. Two different algorithms have been implemented
to solve the elliptic equation associated to surface pressure gradient contribution: a parallel
preconditioned conjugate gradient and a new solver based on a Dual Schur Complement method
(the FETI method). The FETI solver is shown to have better properties of convergence,
especially for large model size. Parallel model validation and performances are assessed on
increasing size academic problems and on a real life application of the western Mediterranean

sea circulation.






1. Introduction

The study of the ocean and its influence on the global climate system require to investigate
more and more precisely physical processes described by a sophisticated set of equations based
on Navier-Stokes equations plus some physical approximations and parameterizations: the
Primitive Equation. These processes are characterized by a broad range of spatial and temporal
scales which encompass the relevant dynamics and involve longer integrations at finer
resolution. One of the key to investigate a new physics and to continue to do useful climate
research is to design numerical models that can utilise state of art high performance computers.
As computer technology advances into the age of massively parallel processors, the new
generation of OGCM has to offer an efficient parallel tool to exploit memory and computing
resources of distributed architectures and previous limitations regarding domain size, simulation
times and sensitivity testing will be much less daunting than before [1]. Developers need to
elaborate an efficient parallel strategy and adapt the software structure to benefit from these new
generation of computers. At the beginning of nineteenth, the Single Instruction Multiple Data
flow execution model (SIMD) [2] seemed to be the parallel solution in Earth Sciences field. To
obtain an efficient parallel model, Wolters [3] has developed a parallel implementation of the
Hirlam model on a SIMD MasPar MP-1 system, like Smith ef al. [4] for the GFDL Model [5]
on a CM-2 Connection Machine, and Vittard et al. [6] for the OPA model [7] on the same
platform. Today, SIMD execution model seems too poor in CFD context, at each time step,
each processor has to realise the same operation on different data, and requires high degree of
parallelism to exploit efficiently a very large number of elementary processors. So
parallelization of implicit operator, that couples all the points of a considered domain, like the
surface pressure gradient (hereafter referred to as SPG) in ocean field has been a critical point.
The Multiple Instruction Multiple Data flow execution model (MIMD) [2] appears to be more
appropriate to answer to needs of the CFD scientists [8, 9]. For computer development and for
numerical experiment our target architecture is the MIMD distributed machines. These machines
use a large number of standard processors and memory is physically distributed among the
processors to constitute nodes. These nodes are connected together, with a topology : tree, 2D
grid, 3D torus, hypercube...

In the context of a community ocean model, a right methodology has to preserve the
readability of the FORTRAN code by non computer specialists for future numerical
developments to investigate new processes and the portability to remain machine independent.



The domain decomposition methods are known to be very effective as parallelization methods
of complex scientifics models, they consist in splitting the large computation domain of a
numerical experiment into several smaller sub-domains and in solving the set of equations by
addressing "independent" local problems. Such an approach reduces the elapsed time,
minimizes the computer code modifications that preserves its properties (physics
parameterizations implementation, modular coding style, vectorization, ...) and ensures
software portability (the computer could be a devoted architecture or a workstation network...).
In addition, an original mathematical methods [10] can be considered to improve the numerical
behaviour in order to save computer time. As the local problems are solved by using the same
code, it has been noticed that even if our methodology is very general and well suited to exploit
coupled models on MIMD platform, we focus on the parallelization of OPA model by using a
SPMD (Single Process Multiple Data Flow) execution model.

The message passing programming model, that considers the Massively Parallel
Processors (MPP) machine is equivalent to a multi-machine and each machine has its own
processor unit and its local memory, defines a natural framework to exploit a Domain
Decomposition strategy and a distributed algorithm efficient on a distributed architecture.
Developers respect the initial structure of the FORTRAN code , but they have to organise local
and global information transfers to manage the distributed memory. This is why error detection
may be time consuming and development cost can increase then the data-parallel strategy
presents the advantage to hide interprocessor communication from the programmer, but the
code has to be rewritten by adding directives [11, 12]. Neverthless, we will see in Section 3
that messages passing operations can be also hidden from the scientists in specialised
subroutine that encapsulates the calls to standard or vendor proprietary communication library.

After introducing the OPA model and it's main numerical characteristics in Section 2, the
different parallelization choices and their implementation are discussed in Section 3. The
strategies adopted for the elliptic equation associated with the surface pressure gradient are
presented in Section 4. Real life and academic experiments are assessed in Section 5 to validate

the massively parallel code resulting.

2. The OPA model

2.1. Model equations

The ocean is a fluid which can be described by the Navier-Stokes equations plus the
following additional hypothesis which are made from scale considerations : (a) spherical Earth
approximation; (b) thin-shell approximation; (c) turbulent closure hypothesis; (d) Boussinesq



A hypothesis; (e) hydrostatic hypothesis; (f)
Z Incompressibility hypothesis. In
oceanography, we refer to this set of equations
as Primitive Equations (hereafter PE).

It is useful to solve PE in various
J curvilinear coordinate systems. Indeed, in
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many ocean circulation problems, the flow

field has regions of enhanced dynamics (i.e.
- western boundary currents, equatorial
currents, or oceanic fronts) which extend in a
relatively small fraction of the physical
- domain. Added efficiency can be earned by

-

-
-
-
-
-
-
-
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improving resolution in such regions.
The common geographical coordinate

Figure 1 - The geographical coordinate system (A,9,z) ) ]
and the survilinear coordinate system (i,j,k) on the System has a singular point at the North Pole

sl | which cannot be easily treated in a global

model without filtering. One solution consists
in introducing an appropriate coordinate transformation which shifts the singular point on land
[13]. An efficient way of introducing an appropriate coordinate transform consists in using
tensorial formalism. Such a formalism is suited to any multi-dimensional curvilinear coordinate
system. Ocean modellers mainly use three-dimensional orthogonal grids on the sphere, with
conservation of the local vertical. Herein we will give the simplified equations for this particular
case.

Let (i, j,k) be a set of orthogonal curvilinear coordinates on the sphere associated with a
set of unit orthogonal vectors (i,j,k) linked to the Earth such that k is the local upward vector
(Fig. 1). A geographical position is defined by the latitude (i, j), the longitude A (i, j) and the
distance from the centre of the earth a + z(k) where a is the earth radius and z the altitude above
a reference sea level (Fig. 1). Using hypothesis (b), the local deformation of the curvilinear

coordinates system is given by three scale factors :
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The resulting horizontal scale factors ¢, and e, are independent of & while the vertical scale
factor is a single function of k. The ocean is contained between the bottom at k = 0 and the sea
surface at k =k, where z(0)=-H(,j) and z(k,)=0. Nine variables specify physical
condition of the ocean: the velocity U= (u,v,w), the relative vorticity ¢, the horizontal
divergence ¥, the potential temperature 7, the salinity S, in-situ density p  pressure p. Using
the most standard turbulent closure hypothesis (the turbulent fluxes are assumed to be

proportional to the gradient of large scale quantities), the PE can be written as follow:
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where p, is a reference density, p is the pressure, f is the Coriolis acceleration
(f =2Qsing(i, j) where W is the Earth angular velocity), g is the acceleration of gravity, A",

A™, A" and A'T are the lateral and vertical eddy viscosity and diffusivity coefficients

F; and F; are the surface forcing fluxes of momentum heat and salt prescribed from



observations or from an atmospheric model, and the relative vorticity { and the horizontal
divergence Y are given by:

I Vi Fa(ezv)_a(e,u)_ ©
ee,| Oi d |

_ 1 _a(ezu)+8(e,v)_ (10)
ee,| di dj

Equation (8) represents the non-linear state equation, usually chosen as the UNESCO
equation of state as derived by Jackett and McDougall [14]. It gives in situ density as a function
of potential temperature, salinity and depth as pressure in decibars is approximated in (8) by
depth in meters.

In addition to Egs. (2) to (8), a parameterization of convection must be added. Indeed,
due to the hydrostatic hypothesis, convective processes have been removed from the initial
Navier-Stokes equations. They can be parameterized in three different ways in the OPA model.
First, a non-penetrative convective adjustment algorithm can be used which mixes downwards
instantaneously the statically unstable portion of the water column [15]. Second, the vertical
eddy coefficients can be assigned to be very large (a typical value is  m*s™) in regions where
the stratification is unstable. Last, a 1.5 turbulent closure scheme can be used. This scheme has
been embedded in OPA by Blanke and Delecluse [16] to represent the various vertical turbulent
mixing regime encountered in the ocean. It can also deal with statically unstable density profile
in a way similar to the second method as it produces large vertical eddy coefficients in case of
static unstabilities [17].

The ocean configuration is defined by specifying the depth field H(i, ). Lateral
boundaries may be either closed or periodic. Otherwise, arbitrary specifications of the coastline,
bottom topography, and connectedness are allowed. The boundary conditions are that there is
neither flow nor flux of heat or salt across solid boundaries. In particular, at the ocean bottom,

the flow is required to be parallel to the slope, i.e.,

i O o il (11)

Additional momentum boundary conditions are needed for the boundary layers. Usually, a no-
slip condition (u# = v = 0) is imposed on lateral walls while the momentum fluxes are either zero
or specified by a linear or quadratic law at the ocean bottom.

The surface kinematics boundary condition depends on the way the surface pressure
gradient (SPG) is evaluated. Indeed, the total pressure at a given depth z is composed of a
surface pressure p, at a reference geopotential surface (z = 0) and a hydrostatic pressure p,:



P, j,z,) = p.(i, j,t) + pu(i, j, z,2)- The latter is computed by integrating (4), but the former
requires a more specific treatment. Two strategies can be considered: (i) the introduction of a
new variable A, the free-surface elevation (link to p, by: p, = pgn), for which a prognostic
equation can be established and solved ; (ii) the assumption that the ocean surface is a rigid lid,
on which the pressure (or its horizontal gradient) can be diagnosed. When the former strategy is
used, a solution of the free-surface elevation consists in the excitation of external gravity
waves. The flow is barotropic and the surface moves up and down with gravity as the restoring
force. The phase speed of such waves is high (some hundreds of metres per second) so that the
time step would have to be very short if they were present in the model. Several methods exist
to overcome this problem, sub-cycling or implicit time scheme [18, 19], or introduction of a
force which selectively damps external gravity waves that are resolved spatially but not
temporally [20]. The latter strategy filters these waves as the rigid lid approximation implies
1 =0, i.e. the sea surface is the surface z = 0. This well-known approximation increases the
surface wave speed to infinity and modifies certain other long-wave dynamics (e.g. barotropic
Rossby or planefary waves). In OPA, the two strategies can be used [20]. As they both leads to
a similar algorithm (inversidn of an elliptic equation), we only detail here the strategy (ii).
Assuming that the ocean surface is a rigid lid on which a pressure p, is exerted, the
surface kinematics boundary condition reduces to w = 0 at the sea surface. From (5) and (11),
it can be shown that the vertically integrated flow HU, is nondivergent (where the overbar
indicates a vertical average over the whole water column). Thus, HU, can be derived from a

volume transport streamfunction ¥ :
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As p, does not depend on depth, its horizontal gradient is obtained by forming the vertical

average of (2) and (3):
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Here M = (M, , M, ) represents the collected contributions of the Coriolis, hydrostatic pressure
gradient, non-linear and viscous terms in (2) and (3). The time derivative of Y is the solution
of an elliptic equation (14) which is obtained from the vertical component of the curl of (13) :
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Using the proper boundary conditions, (14) can be solved to find dy/d¢ and thus using
(13) the horizontal surface pressure gradient. Nevertheless, a difficulty lies in the determination



of the boundary condition on Jy/dt. The boundary condition on velocity is that there is no
flow normal to a solid wall, i.e. the coastlines are streamlines. Therefore (14) is solved with the
following Dirichlet boundary condition: dy/dt is constant along each coastline of the same
continent or of the same island. When all the coastlines are connected (there are no islands), the
constant value of dy/dt along the coast can be arbitrarily chosen to be zero. When islands are
present in the domain, the value of the barotropic streamfunction will generally be different for
each island and for the continent, and will vary with respect to time. So, the boundary condition
is: ¥ = 0 along the continent and ¥ = 1, along island n (I < n< Q), where @ is the number of
islands present in the domain and p, is a time dependent variable. As (14) is linear, its solution

Jy/dt can be decomposed as follows :

v v, 2au
. ) [2] n 15
ot ot " et Ot ¥ (15)

where Jv, /ot is the solution of (14) with dy,/dt = 0 along all the coastlines, and where v,
are the solution of (14) without the time derivative, with the right-hand side equal to 0, and with
y, =1 along the island n and v, = 0 along the other boundaries. Using this decomposition
and evaluating the circulation of the time derivative of the vertical average velocity field along a
closed contour around each island, an equation for dy,/d* is obtain:

[&é[k xVy, | dlLﬂS (%ls"sg = (§{ﬁ - é[k X V(%—:mm . dl] (16)

I<n<Q 1<n<Q

The left hand side of (16) is a product of a small size matrix by a vector (J, /) <,<o- The
matrix is independent of time and can be calculated and inverted once.

2.2. Numerical characteristics

The ocean mesh (i.e. the position of all the scalar and vector points) is defined by the
transformation that gives (4,9,z) as a function of (i, j,k). Special attention has been given to
the homogeneity of the solution in the three space directions. The arrangement of variables is
the same in all directions (Fig. 2). It consists in cells centered on scalar points (7, S, p, P, ¥)
with vector points (u, v, w) defined in the centre of each face of the cells. This is the
generalization to three dimensions of the well-known Arakawa- C grid [21]. The scale factors
are defined as the local analytical value provided by (1). As a result, the mesh on which partial
derivatives 0/di, d/dj, and d/dk have to be evaluated is an uniform mesh which grid size is
the unity [22]. The numerical techniques used to solve the model equations are based on the
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Figure 2 - C grids in Arakawa's classification.

traditional, centered second-order finite difference approximation. Note that the partial
derivatives of scale factors are also computed by centered second-order finite difference
approximation. This preserves the symmetry of the discrete set of equations and therefore
allows to satisfy many of the continuous properties [7]. Further detail about the model and the
numerical schemes used are given in the model reference manual [7].

For the non-diffusive processes, the time stepping is achieved with the well known
leapfrog (three-level centered) scheme [21]. The computational noise associated with- this
scheme (a splitting of the solution on even and odd timesteps) is controlled through the use of
an Asselin time filter (first designed by Robert [23] and more comprehensively studied by
Asselin [24] ). For diffusive processes, an Euler forward scheme is used. Unfortunately, the
scheme is often unstable for vertical diffusive terms due to the relative strength of the vertical
eddy coefficients compared to the vertical scale factors, and so, for these, an Euler backward
scheme can be used. The latter scheme, as the non-penetrative convective adjustment algorithm,
requires information over each entire individual water column.

The last algorithmic choice associated with the model equations concerns the way (14) is
solved. With the second order finite difference approximation chosen, (14) leads to a matrix
equation of the form:

Ex=b (17)

where E is a positive-definite symmetric sparse matrix, and x and b are the vector
representation of dy/dt and of the right hand side of (14), respectively. Due to the huge size
of the problem (currently more than 50,000 unknowns), (17) is solved using iterative methods
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such as a Successive Over-Relaxation (SOR) or Preconditioned Conjugate Gradient (PCG)
algorithm. PCG method is further detailed in section 4. At this stage, the important point to note
is that the resolution of (17) requires information over the whole horizontal domain.

The numerics briefly described above allows to identify the space dependencies
associated with the resolution of the PE. Computing SPG requires a knowledge over the whole
horizontal domain (horizontal implicit operators), the vertical physics (thereafter VP that
includes parameterization of convective processes, 1.5 vertical turbulent closure, time stepping
on the vertical diffusion terms) involves each ocean water column as a whole (vertical implicit
operators), while for the remaining part of the model (hereafter PE') the computation remains
local, depending only of the point and its very neighbours (fully explicit for all space

operators).

3. Parallelization choices.

In domain decomposition methods field, it has been noticed [25] that an efficient
- parallelization strategy involves to split the global domain into subdomains by preserving the
locality (the locality characterises the spatial extension of an operator, e. g. the number of
neighbouring grid points involved in a computation) and exploiting a coarse granularity of the
calculations, i. e. with tasks performing a number of operations one magnitude higher than the
quantity of data to be recovered on the in or output of these tasks. Such a granularity ensures
the scalability of the algorithm i.e. the whole CPU time continues to decrease as the number of
processors increases. As the order of the operators used in the explicit finite-difference
algorithms of OPA remain weak, calculations are local and depend only on the point and its
neighbours. The dependencies problem is therefore equivalent to a non homogeneous boundary
problem. To inverse an implicit operator as in (14), a large portion of the domain is involved:
there is no locality of the calculations and thus no intrinsic parallelism. In the latter case, it can
be useful to use specific numerical methods [10] to change the dependencies problem into an
open boundary problem. In the case of OPA model, dependencies problem is different in PE',
than in SPG or VP, so they have to be analysed and parallelized in a separate, but coherent,
way [26, 27].

Granularity of parallel tasks for explicit algorithms of PE' is assumed to be function of
the ratio of the number of inner points over the number of interface points. Convexity
considerations prove cubic splitting presents a better granularity and scalability in the context of
parallel computing applied to isotropic processes, but not in Geophysical Fluid Dynamics
whereas the number of grid points of the vertical is one magnitude less than the latitude or

longitude ones. In such a context, pencil splitting (Fig. 3) minimizes the communication cost
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Figure 3 - Pencil splitting with the additional outer halos and the alternated direction communication strategy.

for PE' by reducing the number of interfaces from 6, for the cubic splitting, to 4. The pencil
splitting ensures better granularity and scalability in massively parallel computing field than the
slice splitting used by Clare and Stevens [28] or Andrich er. al. [29] to exploit multitasking
technique on vector machines. Such a strategy is an elegant solution to solve the dependencies
problem of VP and preserves the boundary conditions of the ocean on the surface and the
bottom (11) and appears to be natural in Ocean [30] and in Atmosphere [9].

The OPA finite-difference algorithms are solved using an Arakawa-C grid : local operator
are symmetric, but the FORTRAN expression becomes non-symmetric. So, the implementation
of the local boundary conditions for the global operator is assumed to be the sum of local
operators whose the local boundary conditions could be non-coherent. These features naturally
lead to the easiest programming solution: a data sub-structuring with overlapping boundaries
(Fig. 3). Each processor computes a subdomain. This subdomain owns inner points (they are
part of the study domain) plus overlapping interface points in an additional outer halo (they are
also inner points for neighbouring subdomains). During each time step, overlapping area stocks
boundary conditions for computation on inner points of the subdomain. When the iteration
ends, a synchronised communication phase starts. The overlapping area is declared to receive
computed data sent from the processors that manage adjacent subdomains and vice versa.
During such a communication phase, the interface matching conditions are related to usual
Dirichlet boundary conditions.

As the information is located on the boundary of each subdomain, transfers concern only
a subdomain and its neighbours. In such a case, the alternated direction communication mode is
a very appropriated solution. Each processor communicates with its neighbours in one direction
(east-west), then in the other one (north-south). These operations stay local and can be done in
a parallel way. A hierarchical and centralized point of view where a responsible gets the whole
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information and then diffuse it to each subdomain is avoided and the MPP code scalability is
preserved. In Earth Sciences context in general, and in our parallel system context in particular,
memory appears to be a more critical resource than communication time. So, the size of the
overlapping interface has been parameterized to be configured as a function of the order of
numerical scheme. In OPA code, schemes are second order, so a one grid point overlapping
interface and one communication phases per time step are sufficient to determinate most of local
operators. For specifics operators that present large spatial extension, like isopycnal or
biharmonic diffusion operators..., specifics communication phases have been implemented.
This strategy optimises memory and provides a flexible framework for future evolution of OPA
code.

This analysis leads to solve in the same way the dependency problem of each subdomains
and the lateral boundary conditions of the global domain. Last but not least, a generic lateral
boundary condition operator (LBC), that solve (Dirichlet, symmetric, periodic and bi-periodic)
geographic boundary conditions and the dependences between subdomains, is defines and
isolated in an unique subroutine. Such an approach preserves the readability of the OPA code
for future developments and research actions (the message passing library is hidden from the
scientist) and ensures portability and performance on different systems (the message passing
library can be changed without difficulty). Moreover the work to maintain the code is
minimizing because the initial code and the MPP one are similar modulo the communication
library called in the LBC subroutine.

4. A domain decomposition solver to compute the surface
pressure gradient.

As mentioned in section 3, the calculation of the SPG is a very specific part of the PE
model. Indeed, whatever the hypothesis used to compute SPG (free-surface or rigid lid
hypothesis), this term of the equations leads to a two dimensional horizontal problem that has to
be solved with an iterative algorithm, either in time for subcycling time scheme [18], or in space
for the other methods as these latter all lead to a huge elliptic equation solved by iterative
methods (direct solvers [31] are not efficient for large numbers of grid points while fast Fourier
transform methods [32] are not suitable for complex geometry of the ocean domain). So,
whatever the choice done, one will have to perform a computation on horizontal fields typically
a few hundred time by time step with a few communication phases for each. The ratio between
computation and communication will therefore be a crucial point for SGP calculation and appear
to stay strongly machine dependent. One looks for an algorithm that minimizes the
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communication phase and/or the number of iterations in order to obtain good granularity tasks
to benefit from massively parallel computers.

In this section, we describe the two algorithms used to solve the elliptic equation (17).
The former is an adaptation to massively parallel computer of the old preconditioned conjugate
gradient (PCG) algorithm [33] while the later is a new development based on a Finite Elements
Tearing and Interconnecting (FETI) method [34].

Note that since we consider the rigid lid version of the OPA model, we have also to
compute the islands contribution given by (16). As it has to be done once by time step, this is
not a critical point if the number of islands is small. Then each processor has to know the
inverse of the small size matrix (16). To compute it during the initial part of simulation, a global
communication is required to compute dot product operations associated with the circulations
* along each island that define the different coefficients of A (16). The coefficient of the time
dependent vector B, defined by a circulation in (16), are computed in a same way at each time
step. Moreover, the island contribution is no more required in free surface formulation [19,
20].

4.1. A parallel Preconditioned Conjugated Gradient.

The diagonal PCG algorithm used in OPA model may be described as follows [29, 33].
Given M the diagonal of E, x°, the starting point (usually extrapolated from the two previous
time step calculations), and the gradient at the starting point r’ = b— Ex°, choose an initial
descent direction d” =M™ r’, and an initial trial step length @, = (M™'r°,r’). Repeat the
following steps until the norm of the gradient is reduced below some threshold (usually
(M“ r“,r“) < g* <M" b,b), where € is the precision that is required).

Bo1 =(Ea™,a™) (18a)

X" =X 4+ (g s /g )P (18b)
%= rf*-l —(ety1/B,1 ) Ed™? (18c)
oy =(M™ ™) (18d)
d"=M"r" +(a, /e, )d*? (18e)

Where ( , ) represents the canonical dot product.
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The parallelization of the PCG algorithm is rather straightforward. Indeed, since M is a
diagonal matrix, computing (18b) and (18e) only requires the knowledge of variables at the
very grid point the computation is done. Communication phases are only required in the
calculation of (18a), (18c) and (18d) due to the matrix-vector product Ed"™" and the two dot
products. Ed"™" is computed using the same overlapping strategy as those used on PE' in
order to solve the dependencies problem as an open Dirichlet boundary one. It requires an
alternated direction communication phase to update d” on the overlapping area just after (18c).
The local dot products are computed in parallel on each interior subdomain and sum over the
whole domain through a reduction-diffusion operation to generate the coefficients a, and B,_;.

At each iteration of PCG algorithm requires two matrix-vector products, two dot
products, three linear operations and three communication phases. The PCG algorithm can be
characterised by a weak granularity. For a given number of subdomains, computations have to
be done on a very large size experiment to obtain a good parallel efficiency. Beare and Stevens
[35] have proposed to improve parallel efficiency by adding extra halo to the overlapping
interface applied to the explicit free surface computation, the same idea can be applied to SPG
solved with PCG.

The number of PCG iterations can be reduced by using preconditioning methods based
on local Approximate-Inverse matrix that preserve the locality of the equations (18d) to (18e)
[4]. Nevertheless, the PCG-algorithm convergence slows down with increasing matrix size
[36], i.e. in our case with the number of horizontal grid points. Moreover, PCG can have
important difficulties to capture the solution, because the residual can oscillate and never reach
the required value. Several studies, based on analysis on the eighenvalues spectrum of different
operators, give numerical explanations to this phenomenon [37, 38]. The PCG algorithm
captures, in a rather easy way, the modal components of solution corresponding to large values
and the convergence speed of the PCG algorithm depends on the ratio (K&)” - 1)/(K®" +1)
where K(g) is the condition number, i.e. the ratio of the largest eighenvalue of E over the
smallest one. The five points discretization of (14) leads to a matrix which coefficients depend
on the aspect ratio of the horizontal mesh and of the bathymetry. For a real application, this
often leads to a large K(k) so that the convergence speed can be very low. Moreover, the
condition number depends on number of points in the domain and it's easy to verify that K
increases with the grid size when E is a Laplacian operator. So, the conjugate effects of these
numerical characteristics and the accumulation of cut off penalise the convergence of the PCG-
algorithm in the context of large size computations. This is why this strategy can be too time
consuming and can be a very critical point to use parallel model for high resolution climatic

investigations.
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Figure4 - N p Subdomains partitioning, ( .Qp )p= LN, and the non overlapping interface I.

4.2. A domain decomposition solver based on the FETI method.

The most standard domain decomposition methods to solve an elliptic equation are the
Schwarz algorithm [39], the Schur complement method [40] and the FETI method (Finite
Elements Tearing and Interconnecting) also called the dual Schur complement method [34]. As
the discretized SPG equation (17) is computed only on f-points of the Arakawa C-grid
(Fig. 2), solving (17) by a non-overlapping method, i. e. the two latter, is easy to implement
and present a better intrinsic parallelism than the Schwarz alternating procedure [10]. Navon
and Cai [41] have used the Schur complement method to solve the shallow-water equations,
nevertheless the FETI method is a non-conforming method where the different subdomains can
have different discretizations: such an algorithm defines a natural field to implement a local
zooming approach [42] adapted to solve heterogeneous physical phenomena of Earth Sciences
[43]. So the local grid resolution could be adapted to observe consistent space scales for a
reasonable computing cost: a good knowledge of ocean features will help us to choose
interesting area. Last, we would like to insist on the point that the FETI approach is a very
general approach to solve any elliptic equation associated with SPG.

The global domain € which boundary is d€2 is divided into a set of N » subdomains
(Q daid N, which boundaries are (3.(2 p) , and a non-overlapping interface between the

p=I.N p
subdomains (Fig. 4):
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p=1,NrJ
For purpose of simplification the elliptic equation (14) is rewritten as (19a) with Dirichlet
boundary conditions (19b) :
E(x)=V(kV(x))=b on Q (19a)

x=x% on JQ (19b)

Let us consider the set of the local second order elliptic operators (E 5 )p=1,N associated to the
SPG operator E on (£2),),-; N, the Dirichlet-boundary problem satisfied b)’(’ the global field x
associated to the source term b (19) is equivalent, in its variational form [34], to the set of N p
local problems with the continuity conditions, (20c) and (20d), on the interface I :

E,(x,)=b, on Q, (20a)

x, =12 on 9N, (20b)

Xp =X, on 02, N a‘QPi (20c)

Ky V(x, )y + 56, V(x,, ), =0 on 92,M 0@, (20d)
aQ o

are the values of x, b, Kk and x“°“ in the subdomain .Qp, n, is

, 1s the set of the ~7 adjacent subdomains

where Xp, bp, K, and X,

the outer normal vector of agp NI.As (‘QP: )
=1,

of .Qp, Xp, and K, are the values of x and k in the subdomain ‘st’ Ry, is the outer normal

vector of a‘Qp,- N I'. Let us introduce the Lagrange multiplier associated to the continuity
condition (20c) :

KPV(xp)np=sA on I'mdQ, 201

where the factor s = /. The change of sign indicates that the outer normal derivatives of Xp
and x, are opposite each other.

The FETI methods consists in finding A the value of the normal derivative of the fields
x, along the interfaces I" for which the solution of the local boundary-value problems, (20a)
and (20b), and that satisfy the matching condition (20c). Then, the global field x whose
restriction x, to each subdomain £2,, is defined as the solution of the local Neumann problem
is continuous and also the normal fluxes K, V(xp)np, this is therefore the solution of the

global problem.
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The centered second order Finite Differences procedure transforms the local boundary-
value problem, (20a) and (20b), associated with the Neumann condition (21) and the matching
condition (20c) into the algebraic system :

E,x,=b -B.L (222)
E B,x, =0 (22b)
p=I,Np

where E, x , b, and L are respectively the local SPG matrix, the vectors associated with
Finite Difference discretization of Xps bp and A. Bp is a signed Boolean matrix which
localizes a subdomain quantity to the interface I'". The vector of the Lagrange multiplier L
represents the interaction fluxes needed for gluing together the subdomains 2, along the
interface. Although the global SPG matrix is symmetric positive definite, a set of n, local
matrices E, may be indefinite when (20) has no Dirichlet condition on BQP. Thus, after
renumbering the points of €, E, can be partitioned as follow by considering

Range(Ep) @ Ker(Ep ) d

the solution of the associated local problems of the form (22a) may then be defined as the sum
of two components (23a), one in Range(Ep) (23b) and the other in Ker(Ep)

x, =Ej(b, -B,L)+K,c (23a)
K!b,-K.B'L=0 (23b)

where E; is a symmetric generalised inverse, K, is a basis of Ker(Ep) and the product K¢
is a constant field. If we consider a E, matrix that distinguishes :

Ell Elz
E,= |itEp,l,2 Egz} with rank(Ep) = rank(E:,') (24a)
P

a generalized inverse E; anda K . matrix can be defined, respectively, as

-1 -1
g =|Ep 0] .0d K =|"E» Ep
P 0 0 ’ I

(24b)

More details on computing the generalized inverse and null-space of a large-scale matrix can be
found in [44]. If E,, is regular then :

+ _ -1 -
E;=E;! and K,=0
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We can now substitute the value of Xp given by (23a) in (22b) to lead, with the condition (23b)
to matrix equation satisfied by L and the dual Schur complement operator D :

5 ST

D= S B,E;B, and G=[B,K, il (25b)
p=],Np

d -

bl = E B,E:b, and b°=[K;bp]p=LNn (250)
p=I,Np

This decomposition can be interpreted as a multi-level scheme where the Lagrange multiplier is
split into two components associated to the vectors ¢ which collects a local constant value
within a subdomain and L. which accounts for the local fluctuations within each subdomain
[8]. Therefore, the problem to be solved is presented as a constrained maximization problem

[34], the form of which is given using matrix-notations by :

MaximizeS(A )= - %l’ DA+ A (bd + Gc) (262)
A

SubjecttoG' A = b° (26b)

This constrained quadratic problem is then solved by means of a Preconditioned
Conjugate Projected Gradient algorithm [45], hereafter PCPG. If L’ is chosen to satisfy the
constraint equation G'L’ =b®, then for n>0, L' must satisfy G'L"=0 and a suitable
projector is an operator that projects L" onto the null space of G'. Let the projector P be

defined by the following expression :
-1
P=1-G(G'G) G' 27)

As Range(G)= Ker(G‘) the local constants contributions are treated implicitly in this
PCPG algorithm since they are associated with the projector P, and the Lagrange multipliers
contributions are treated iteratively. The solutions (L,c¢) has to satisfy (25) and are not
interesting by themselves, any combination of these variables that satisfy equilibrium (25) is
acceptable. Note that it has been demonstrated in [34], for the category of problems treated
herein, the G matrix has full column rank and therefore this projector exists. The constrained

maximization problem given in (26) is then equivalent to the linear system :
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P(DL - b“) =0 (28a)

G'L=b¢ (28b)

In summary the Preconditioned Conjugate Projected Gradient algorithm (hereafter PCPG)
for solving the interface problem arising from the FETI method goes as follow: given M™ an
approximation of D_l, P the projector on to the null space of G* (Egs. (24b), (25b) and (27)),
L’ the starting point (L = G(G'G)" b¢ is chosen to satisfy G'L® = b® (25a)), the gradient at
the starting point r’ =b* — DL" and the projected gradient #* = Pr®, choose an initial projected
descent direction d° =PM™’, and an initial trial step length «a, = (d“ ,F’). Repeat the
following steps until the norm of the gradient is reduced below some threshold (we have
chosen (M‘l ", M1 f'“) < &” (b,b), where ¢ is the precision that is required for the problem
(28) and can be different to the precision required for the problem (17)).

B, =(Dd"",a"") (292)

L'=L""+(a,_,/B,.,)a"" (29b)

" =r""'—(a,_,/B, ,)Dd"" (29¢)

Project " =Pr" (294d)
Precondition m"=M"¢" (29)
Re-Project m"=Pm" (29f1)
a, ={i" ") (29¢)

d"=m"+(a,/a,_,)d"" (29h)

The first component of the solution (23a) is estimated from the equation (29b) :
x! =E; (b, - B,L") (29i)

As the projector P is solving the local constants contributions Gc in (26), the estimation of the
local constants contributions in X" is obtained by considering the definition (27):

r"-#-G(G'G) G'r--G¢' 29))
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Then, the estimation of the solution arises from (23a):
=1
x"=x"-K, (Gt G) G'r (29k)

The matrix D is a general matrix, it is not feasible to explicitly assemble it. This implies
that a direct method cannot be used to solve the above interface problem (28). An efficient
algorithm to solve (28) is the PCG method because once (E;)ps; e have been factored,
matrix-vector products of the form DL can be efficiently performcd upsing only forward and
backward substitutions. Moreover, the size of this problem is equal to the sum of the number of
points of the interface of each subdomain agp NI, so this is a small size problem in
comparizon of number of points over all the domain of simulation, the size of the problem (17).
Furthermore, D is a first order differential operator, it presents a better intrinsic condition
number than a second order differential operator as E, then the numerical behaviour of a PCG
algorithm to solve (28) is better than to solve (17). An other interest of this methods consists in
the decomposition of the matrix D and the right hand dual member b? in local matrices and
local right hand members : this approach leads to a naturally distributed parallel algorithm based
on fast local algebraic operations. As the size of the local problem (22a) is equal to the total
number of points of the domain divided by the number of subdomains, (22a) can be solved by
a direct method as LU factorization. This approach avoids the difficulties arising from the
convergence of all the local problems in parallel and fully non-dependent way. As, the criterion
convergence is apply to the dual equation (28) high precision is required to estimate x,, this is
an other advantage of a direct solver. It has been noticed that these method leads to a naturally
distributed parallel algorithm where each subdomain is allocated to a different processor. This
approach seems to be more efficient than the parallelization of the PCG algorithm because the
parallel solution of these local problems leads to a parallelism with a coarse granularity.

In order to prevent convergence difficulties, different strategies have been proposed to
ensure robustness and to speed up the convergence of the interface problem. As an
approximation of the inverse of D (25b), a preconditioner matrix based on the local matrices

= nt
M = E B,E! 'B, (30)

p=!.Np

E,' has been implemented :

A Reconjugation method is applied to enforce, at iteration n, the direction vector of the
Conjugated gradient to be conjugated to the n-/ previous ones to avoid the propagation of
numerical errors due to finite precision arithmetic, so the equation of the vector direction d”

(29h) is changed into the conjugation relation [46] :
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d"=m" +Z(af/a‘._,)d‘-‘ (31)

i=ln

Moreover, in order to optimise the behaviour of the PCPG algorithm associated to FETI solver
during time integration, a Krylov initialisation-correction procedure [47] has been developed.
To solve the linear system equations satisfied by the dual operator (28), PCPG algorithm
consists in computing a set of direction vectors that are conjugated with respect to the dot
product associated with the matrix D. The descent vectors generated (di) ) constitute a bases
of the Krylov space of vectors H” = span(d“,dl,...,d“) Let note n' the number of PCPG
iterations required to solve (28) at the time step it of an ocean simulation, the set of conjugate
vectors (di)r iV where NN"' = En‘-j, is built by accumulating the direction vectors
computed for the solution of all prev10us ‘problems (those have been solved at time step 1 to
I,) If a second hand member b? and a first guess L' are given, then the element L‘Lp, of
L’+H Ny that optimises the initial residual can easily be computed and at each time step N,,,

the iteration of the conjugate gradient algorithm can start from the optimal starting point:

Lopt = _Z——(Fo’di> d' (32)
gt~ (Dd‘,di)

i=1, NN

Mathematical proprieties, technical difficulties and a precise version of the FETI algorithm are
detailed in [34]. It has been noticed that our implementation is really vectorized and uses BLAS

subroutines [48].

5. Testing the parallel strategy.

A variety of test problems has been studied to determine the computational character of
the parallel model by evaluating algorithmic and numerical solutions and the scalability of the
code in the context of large size computations. The tests included : (p;) realistic simulation of
the western Mediterranean basin; (py) scaling test case based on academic ocean boxes. In (P,
the model configuration designed by Herbaut ez al. [49] to study the western Mediterranean Sea
is used to validate the physical behaviour of the parallel model with a well-know experiment in
the context of real life simulation. The computational behaviour of each parts of the parallel
model have been considered to propose a performance model to describe the speed up of the
parallel code versus the number of subdomains. A set of academic test cases has been designed
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Figure 5 - Sea Surface Temperature of the western Mediterranean after 2 years of time integration on a Paragon
_system.

in (pp) to illustrate the different numerical behaviour and scalability of the PCG and FETI

algorithms when the domain size increases.

5.1. Modelling the western Mediterranean circulation on a massively

parallel machine

The Western Mediterranean Sea (Fig. 5) is a pertinent example of the basin study
complexity from physics and computer sciences point of view. It can be view as a small size
ocean where most of phenomena that have effects on global ocean circulation are present: deep
convection, coastal current instabilities, straits dynamics, interaction between large scale
circulation and coastal circulation... The basin extends to an area situated from 8.5° West to
16.5° East in longitude and from 34.8° to 44.8° North in latitude. The grid size is 1/8° in
longitude and 1/10° in latitude which roughly correspond to a 10 km grid size in both
directions. The number of vertical levels is 31 whose thickness varies from 6 meters at the
surface to 400 meters at 4000 meters. The resulting model mesh has 200 x 100 x 31 = 620,000
grid points. The topography has been designed from a realistic bathymetry at 5° of resolution.
Only five islands have been conserved at the considered resolution : Ibiza, Majorca, Minorca,
Corsica and Sardinia. The Straits of Gibraltar and Sicily are respectively connected to a
schematic Atlantic ocean and Eastern Mediterranean sea filled with waters whose temperature
and salinity are restored to a climatology [50]. Surface boundary conditions (wind stress, heat
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and fresh water fluxes) are prescribed from the daily output of the Peridot forecast model of
Meteo France [51].

The computer time used for one month circulation is 53 minutes with a 50-processors
Paragon system, that is equivalent to a Cray C90 system. The executable code occupies 22
Mbytes per processor. The access file is a very stress point with several reading phases (daily
forcing) and several writing phases (3D output files). (Fig. 6) presents the evolution of I/O
time versus the number of subdomains during a one month simulation. The different fields are
gathered by a few number of writer/reader processors and the parallelism of the Parallel Files
System of the Paragon is managed by only six I/O processors, these bottlenecks explain the
weak parallelism of I/O phases whereas the number of subdomains is high. Neverthless, the
time used for disk acces phases (td) remains negligible compared to the whole simulation time.
(Fig. 7) shows that, for a number of subdomains is varying between 30 and 90, the calculation
time of SPG by the FETI algorithm (tf) and the communication time (tc) associated with the
remaining code are negligible compared to the calculation time of PE' and VP (tr) that can be
identified to the whole simulation time (approximation 1). As the pencil splitting preserves the
dependencies along the vertical associated with VP, the calculation cost of the space implicit
part of these operators can be neglected compared to the calculation cost of the 3D explicit
operators of PE' (approximation 2). Then on a N ,-processors machine, the computer time e

is supposed to be proportional to the local domain size:

td
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Figure 6 - Evolution of I/O time versus the number of processors for a
monthly time integration of the western Mediteranean model of Herbaut et al.
on a Paragon system.
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Figure 7 - Different calculation and computation times versus the number of
subdomain for one hundred time steps integration of the western
Mediteranean model of Herbaut et al. on a Paragon system.
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Figure 8 - Measured and theoretical speed up versus the number of
subdomains for one hundred time steps integration of the western
Mediteranean model of Herbaut et al. on a Paragon system.
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"r =" N> N7 N, (33)

where NN" NN , N, are the dlmensmns of the space grid associated to a N ,-subdomain
(with the overlappmg area) £, and © N represents the computing time per grid points of this
subdomain. This coefficient is machine and implementation dependent, it integrates imbalances
plus approximations 1 and 2. The speed up measures how much faster a parallel computation is
performed on N ,-processors machine than on a mono-processor machine. As the proposed
domain decomposition method requires to split the domain into a 2D grid of subdomains, the
theoretical speed up, sufz , 1s equal to :
N,  ©'N/'N!
Sy, @Np NNP NNF

(34)

Assuming a perfect parallelism (approximation 3) plus approximation 1 and approximation 2,
the @ coefficient remains independent of the number of subdomains and (34) can be

approximated by :
N N/ N|
suy” = ———5— (35)
NP NP

This ratio has to be compared to the real speed up that compare the elapsed time for the parallel

; . : ; N )
algorithm on a "N p-Processors machme" fora N p-subdomain experiment, ¢ 7, with the

. . - N
sequential algorithm computation time, #,”. In fact, £,” can not be measured because the

experiment is too large for the local available memory, and it should be estimated. In this case,
the real speed up reads :

r— (36)

with 7, N is the computer time associated to the processor number p of the “N p-processors
machme and D the density of non-overlapping points of the subdomain number p in case
of a N,-mesh (non redundant part of computation). (Fig. 8) proves the perfect agreement
between the real speed up and the theoretical speed up that validates the three approximations
and illustrates the quality of the implementation of the parallelization choices and the FETI

solver.
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Figure 9 - Speed up of the OPA code excepted the surface pressure gradient operator versus the
number of subdomains for one hundred time steps integration on a Cray T3E system.

5.2 An academic large scale experiment

An elementary subdomain is defined which nearly requires the whole local memory of
each processor of the T3E machine, its size, 60 x 60 x 31 grid points, occupies 90 Megabytes.
Each processor solves the same model on its own subdomain defined from the initial
elementary subdomain. Such a test with a fixed local granularity allow to consider the
scalability of the OPA algorithms instead of the scalability of a numerical experiment governing
by a variable granularity. When the application is fully parallel, the (theoretical) scaled speed up
is nearly linear due to the halo effect (that is represented by D;v"’ coefficient in (36)). To
measure the real scaled speed up ssuiv” , it's not possible to run scaled problems on a mono-
processor machine because they don't fit in the memory, so this quantity is estimated by the
equation (36). (Fig. 9) confirms the scalability of the algorithm associated with VP and PE’,
then whereas the horizontal domain size is increasing, OPA becomes more and more time
consuming with paralle]l PCG than with FETI (Fig. 10). As explained in section 4 and shown
by (Fig. 11), the PCG numerical behaviour is degrading the scalability of OPA code in
comparizon with FETI one whereas the number of subdomains increases and SPG computer
cost becomes preponderant. As an example, (Fig. 12-a) illustrates how, for the 32-subdomains
test case, the number of iterations of the optimized FETI decreases very fast versus time and

after 10 time steps, less than 7 iterations per time step are required to capture the solution.
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Figure 10 - Ratio of time simulation of OPA with PCG over time simulation of OPA with FETI versus the
number of subdomains for one hundred time steps integration on a Cray T3E system.
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Figure 11 - Ratio of time simulation of SPG with PCG over time simulation of SPG with FETI versus the
number of subdomains for one hundred time steps integration on a Cray T3E system.
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Figure 12 - Number of solver iterations versus time for a 32-subdomains test case on a Cray T3E system:
(a) FETI solver, (b) PCG solver
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Figure 13 - Number of iterations versus the relative precision, logg(e), for a 32-subdomains test case on a Cray
T3E system: (a) FETI solver, (b) PCG solver.

On the contrary, the number of iterations required for PCG convergence stays constant and
large (400 iterations) during time integration (Fig. 12-b). Last but not least, high resolution
simulation involves large size experiments over long periods and high precision € on the
calculation of the SPG. The curve shows a very regular and efficient convergence behaviour for
FETI (Fig. 13-a) and the number of iterations stays small, then PCG number of iterations
increases very fast with the precision (Fig. 13-b). Obviously, an iteration of FETI is more time
consuming than a PCG one, this cost depends on the ratio defined by the whole experiment
domain size over local subdomains size then, to simplify (FETI (N b )) __ can be described
as a set of methods associated with N,-subdomains and two limit cdses : an exact inverse
solver (N, is equal to one) and the PCG solver (N, is equal to the number of horizontal grid
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points). For a given numerical experiment characterized by a large domain size integrated over
long periods and high precision calculations of SPG, the most efficient splitting is not easy to
determine, but the parallelization choices applied to VP and PE' (exposed in section 3 and
illustrated in part 5.1.) ensure high scalability and parallel efficiency for a large value of N o
then FETI, applied to SPG, preserves them.

6. Conclusions

The ideas underlying domain decomposition methods have been integrated in the OPA
model release 8. The domain has been divided into subdomains by a pencil splitting that
respects physical proprieties, the vertical boundary condition and the algorithmic scalability
needed to obtain parallel efficiency and high performance computing to use finer discretization.
An interface management strategy with overlapping boundary have been chosen to ease the
issue of the dependences between subdomains. A generic lateral boundary condition operator
(LBC) that solve the geographic conditions and the matching ones between subdomains have
been defined. The LBC subroutine focuses the communication phases introduced by the
parallelism and minimizes the modification of the FORTRAN code. Then the algorithmic
solution proposed leads to a software that improves the readability of OPA model by ocean
scientists and makes future numerical developments easier for climatic and ocean investigation.
As an interesting consequence, the introduction of the LBC operator is an essential step to
tackle the design and the implementation of the parallel adjoint model of OPA [52, 53]. The
portability of the code on multi-processors and mono-processor platform is preserved:
developments have been done on an Intel Paragon computer, then a real life version of the code
have run on a large set of different platforms such as Cray T3D, Cray T3E, IBM SP2 and
Fujitsu VPP ones with different message passing communication libraries (NX, SHMEM,
PVM, MPI). The parallel version of the conjugated gradient algorithm based on this domain
decomposition strategy allows to solve the surface pressure gradient contribution in the parallel
processing field, this solution presents the advantage to be easy implemented. On the other
side, the FETI method exploits largest granularity computations and presents a more robust
numerical behaviour. The presented Domain Decomposition approach can be described as a
nutshell strategy of the initial code plus the implementation of a fully optimised Dual Schur
Complement Method to solve the elliptic equation associated with the surface pressure gradient
[54]. Efficiency tests prove the total scalability and illustrate the implementation quality.
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Figure 14 - Optimization of the subdomain splitting for a North-Atlantic experiment. The 15 Squares in white
represent the sub-domains which have been illiminated as they are land-only sub-domains.

It has been noticed the initial code was quite well vectorized: a performance of 500
Mflops was obtained on a C90 processor whose peak performance is 1 Gflop. So, such a code
have an interesting behaviour on a parallel-vector platform to benefit from parallel efficiency of
the Domain Decomposition implementation, when tasks granularity is preserved, and vector
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potential of the processor. As Sawdey et al. [55] and Beare and Stevens [35], the non-useful
points of the land domain due to Finite Differences and vector technique are minimized by using
a very general scheme that it allows the ocean to be split into irregularly-shaped subdomains
(Fig. 14).

Last but not least, domain decomposition approach allows to fit with the non-uniformity
of the physical processes by providing a natural framework for zooming methods adapted to
space or time scales consistent with local physics phenomena [43], the use of an heterogeneous
model based on different parameterizations fit to local physics characteristics, the use of an
heterogeneous model to solve an heterogeneous problem (coastal model with offshore model, a
coupled ocean -sea ice- atmosphere model). It has been noticed that a special care had to be
taken to specify consistent boundary conditions. For such an ambition, the implicit co-operative
programming model has to organize future modelling with independent kernels that are able to
communicate instead of a ‘monolithic architecture integrating different models [56]. In Earth
sciences field, this modularity and task separation concepts have defined the development
philosophy of coupling tools such as OASIS software [57]. So, it has also shown that this kind
of approach can be suited for very different types of coupling (paleoclimate studies, stratopheric
chemistry, hybrid modelling...) on top of more traditional ocean-atmosphere coupled

- experiments [58, 59].
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