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Abstract. The transient behavior of the atmospheric circulation is examined in two reanalysis
datasets provided respectively by NCEP (National Centers for Environmental Prediction, NOAA)
and ECMWF (European Center for Medium-range Weather Forecasts). The time period for both
datasets covers 1979-1993. The agreement between the two reanalyses is, in general, good in the
Northern Hemisphere. But in the Southern Hemisphere, considerable discrepancies exist over the
data-poor regions. The transient kinetic energy, the meridional transient flux of heat and angular
momentum are about 20% smaller in NCEP than in ECMWEF. These differences are mainly due
to the fact that transient events have smaller amplitude in NCEP than in ECMWF. However their

time evolution and space pattern agree well between the two datasets.



1 Introduction

The transient behavior of the atmospheric circulation is an important component of the general
circulation. The studies on the occurrence, amplitude and time evolution of transient waves
contribute directly to the understanding and forecasting of mid-latitude storm tracks and
blockings. Recently, in order to obtain a complete and more consistent dataset of the
atmosphere’s structure, several weather service centers have reanalyzed the past observational
data by using the most advanced data assimilation systems and the state-of-the-art numerical
forecast models. At present, the most important reanalyses available for the scientific community
are those realized at ECMWF (European Center for Medium-range Weather Forecasts),
NOAA/NCEP (National Centers for Environmental Prediction) and NASA/DAO (Data

Assimilation Office).

The advantages of reanalyses are their consistency and homogeneity in time. Compared to
the daily operational analyses, the reanalyses utilize more historical observations and can reach a
more accurate analysis of the atmospheric circulations and a more accurate representation for
data-poor regions. There are, however, limitations to the accuracy of the reanalyzed datasets.
Systematic errors in numerical models can cause errors in the assimilation of observed data and
large biases in data-poor regions. The atmosphcric'evolution as depicted by the different

reanalysis systems can be expected to show discrepancies.

The purpose of this paper is to document and compare the transient behaviors of the
atmospheric circulation between the reanalysis of ECMWF and that of NCEP. Lack of
independent information will not permit us to judge on the quality of the two products, but the

comparison can serve as a measure of the uncertainty. The plan of the paper is as follows. We



present our data processing method in Section 2. Section 3 gives the results and conclusions

follow in Section 4.

2 Data and analysis method

The NCEP reanalysis system utilizes a 28-level global spectral model at the resolution T62.
Detailed descriptions of the model, the analysis procedures, and the input data are given in
Kalnay et al. (1996). The data used in this paper are at the resolution 2.5° for both latitude and
longitude. They are daily averaged temperature 7, zonal wind u and meridional wind v for the
period 1979 to 1993 and at twelve standard pressure levels : 1000, 925, 850, 700, 600, 500, 400,
300, 250, 200, 150, and 100 hPa. The ECMWF reanalysis (ERA) is produced from a T106 data
assimilation system. The model has 31 vertical hybrid levels. The original data are available at
the full resolution of 1.125° and 4 times per day. More information about the ERA system and
data sources can be found in Gibson et al. (1996). In order to overcome the comparison
difficulties related to grid difference, we first transform the ECMWF’s data into the grid of
NCEP, and perform daily averaging. The time period is the same as for NCEP (1979-1993). The
12 vertical pressure levels are also the same. The two datasets have thus same time period, same

spatial and temporal resolution before the analysis processing is applied.

To determine the transient quantity, we have to fix the mean term. We use the calendar

month as our basic time unit, that is, we calculate the mean and covariance terms for respectively

bar denotes a time average. The transient quantities can be then deduced from the residual of the



mean term and the covariance term (Peixoto and Oort 1992). For example, the meridional

transient zonal angular momentum flux can be obtained by :

where a prime denotes a departure from the time average. The seasonal quantities showed
throughout this paper are the 3-month average of the above monthly quantities. In this way, we
can remove the contribution from variations longer than a month, including the annual cycle and

interannual variations.

3 Results

3.1 Mean field

Before discussing the transient quantities, we examine briefly some mean climatology fields.
Figure 1 shows the difference (ECMWF minus NCEP) of the annual and zonal mean
temperature. The most remarkable difference is that the tropopause in ECMWF is colder and the

amplitude can reach -2.5°C in the Tropics. This seems related to the tropopause shift between the

two datasets. Utilization of different parameterization schemes (especially convection and
radiation) is certainly responsable for this tropopause shift. Large discrepancies are also
observed for high latitudes of the Southern Hemisphere. Antarctica is much colder in NCEP than
in ECMWEF, especially in winter season (the same tendency is also observed over Greenland in
Northern Hemisphere winter). The difference is generally small in the Northern Hemisphere,

especially between 30°N and 70°N where data sources are more abundant.



For the mean zonal wind (figure not shown), the agreement between the two datasets is
very good in the Northern Hemisphere. In the Tropics, the easterlies are slightly stronger in
NCEP than in ECMWF. In the Southern Hemisphere, the sub-tropical jet is 1 to 2 m s™' stronger
in ECMWF than in NCEP. The sub-polar jet (visible mainly in austral winter) is also stronger in

ECMWEF than in NCEP.

3.2 Transient eddy kinetic energy

The transient kinetic energy, K,, defined as (”' v 2) /2 , is an overall measure of the

amplitude of transient activities. Figure 2 shows the vertical structure of the zonal-mean
transient kinetic energy in the two datasets for both December-January-February (DJF) and June-
July-August (JJA) seasons. In the Northern Hemisphere, the two datasets are very close to each
other. In the Southern Hemisphere, however, the transient kinetic energy is considerably smaller

in NCEP than in ECMWE. This is true for both DJF and JJA.

Figure 3a shows the 200-hPa annual-mean transient kinetic energy in NCEP. The strong-
value regions are over North Pacific, North Atlantic and mid-latitudes of the Southern
Hemisphere. They correspond to large transient activities of the atmosphere. Small values are
found in the Tropics and polar regions. The panels b and c of Fig. 3 show respectively the
algebraic difference and RMS (root-mean-square) difference between ECMWEF and NCEP. In
the Northern Hemisphere, the agreement between the two datasets is in general good. However,
ECMWEF is about 5 m” s smaller than NCEP, and the RMS difference can reach 50 even 60 m>
s> over North Atlantic and North Pacific. For equatorial Pacific, ECMWF is 5 m” s™ smaller than

NCEP in the eastern part, but larger in the western part. In the Southern Hemisphere, as indicated



before, the transient kinetic energy is systematically smaller in NCEP than in ECMWF, except
over Australia and New Zealand where the observation network is relatively dense. The
difference over Austral Oceans can reach 50 m” s~ and the RMS difference 100 m® s. It is clear
that the lack of reliable observation over these regions is the principal cause of this large

discrepancy.

An interesting contrast (negative and positive signs) can be observed in Fig. 3b between
the Northern and Southern Hemispheres, or between data-rich and data-poor regions. This is
probablly related to the difference in resolution of models and the treatment of dissipation
processes; The poor resolution of NCEP model makes it less suitable to resolve the baroclinic
waves in the Southern Hemisphere so its transient kinetic energy is deficient. At the same time,
the dissipation could be tuned to a very low level to compensate the poor resolution, and this
might explain why the transient kinetic energy in NCEP is excessive compared to ECMWF for

the data-rich regions.
3.3 Meridional transient flux of angular momentum and sensible heat

These quantities are good indicators of baroclinic wave growth (Simmons and Hoskins 1978) and
of dynamical interaction between transient eddies and mean flow (Edmon et al. 1980 ; Hoskins et
al. 1983). They contribute to the global balances of angular momentum and energy. Especially

they determine the way in which these balances are realized. Figure 4 displays the latitude-

pressure diagram of the meridional transient flux of zonal angular momentum, v’u’ . The
maximum transport occurs between 200 and 300 hPa. The agreement between NCEP and
ECMWF is in general good in the Northern Hemisphere, although the maximum center over

30°N is slightly stronger in NCEP than in ECMWF. But in the Southern Hemisphere, the



difference is remarkable : around 30°S (in JJA) and 40°S (in DJF), NCEP is 20% smaller than

ECMWF.

Figure 5 displays the meridional transient flux of sensible heat, v'T” . For the mid-
latitudes of both the hemispheres, we can observe two maximum centers, one is at low level (850
hPa), another is at high level (200 hPa). The direction of the transport is polarward. Note that in
the Tropics between 30°S and 30°N, we can observe small equatorward heat transport by the
transient eddies in the middle levels of the atmosphere. We now compare the two datasets. The
agreement is quite good in the Northern Hemisphere for both seasons. Large discrepancies can be
found in the Southern Hemisphere. For low levels, the NCEP’s transport is about 15% smaller
than that of ECMWF. The value of the active center at 65°S and 930 hPa is stronger in NCEP,
but a careful verification reveals that this is due to excessive values in the region of East
Antarctica (Wilkes land), where extrapolation is less reliable, given the cold bias of NCEP

around Antarctica in JJA.

The difference is even larger for high levels. It seems that the NCEP reanalysis misses
completely the maximum center (especially during Southern Hemisphere winter, JJA), with the
value only half that of ECMWEF. We can deduce that the growth of baroclinic instabilities should

be very different in the two datasets (Simmons and Hoskins 1978).

Figure 6 plots the longitude-pressure diagrams of v'7”’ averaged over latitudes 40°S to
70°S. For the lower layers, the geographical positions are roughly the same in the two datasets,

but values of NCEP are smaller than those of ECMWF. At the level of 200 hPa, we can

distinguish four active centers from ECMWF dataset for both seasons. They are respectively over



Atlantic, Indian Ocean, Pacific and South America. The latter is weak in DJF and strong in JJA.

For the other three centers, DJF intensity is slightly stronger than that of JJA. We can observe, by

comparison, that these high-layer strong v'T” centers are very weak in NCEP. This discrepancy
is probablly related to the difference in models’ resolution and dissipation, since there are only
few observations in this zone and the data are mainly model produced. Straus and Yang (1997)
compared NCEP against NASA/DAO for the Northern Hemisphere winter, they found a similar
situation as revealed by Fig. 6, but the value of NCEP is stronger and that of NASA/DAO is

weaker.
3.4 Occurrence frequency and amplitude of transient events

Until now, our calculation was on the integrated quantities, and it does not give information on
the individual events : their occurrence frequency and amplitude. To study the occurrence
frequency, we can perform a simple calculation of the day-to-day correlation coefficient between

NCEP and ECMWEF for the whole period and for every geographical location.

The calculation has been performed for different variables characterizing the transient
properties of the atmospheric circulation: v/, u’, T’, v’'u’, v'T’ and K, . Since the obtained
results are very similar among the variables, we show only the correlation map for the 200-hPa
transient kinetic energy in Fig. 7 for the whole period of 1979 to 1993. In the equatorial strip, the
correlation between NCEP and ECMWF is very small since the transient circulation is weak in
the tropics. In the Northern Hemisphere, the correlation coefficient reaches more than 0.95,
which confirms the good agreement between the two datasets. At the mid-latitudes of the
Southern Hemisphere, the correlation coefficient can also reach 0.95 for the data-rich regions and

0.9 for the data-poor regions.



Figure 7 is obtained without removing the seasonal cycle that may enhance the correlation
coefficient. To evaluate the influence of the seasonal cycle, a year-to-year permutaion procedure
is used. For every geographical location, we calculate a lagged correlation coefficient by
delaying one of the two time series by a lag of 1, 2, ..., 8 years respectively. In this manner, we
construct a statistical ensemble and perform a t-test. It reveals that Fig.7 is statistically significant

at 100% confidence level for the whole globe.

We can deduce from these results that the occurrence frequency and temporal evolution of
transient events agree well between NCEP and ECMWF in the Southern Hemisphere. We can
also deduce that the differences mentioned in the previous subsection are due to amplitude

difference between NCEP and ECMWF.

In a similar way as for calculating the correlation map, we can also compute the space
pattern correlation between the two datasets on the daily base. We use the mid-latitudes of both
the Hemispheres (30°S-70°S and 30°N-70°N) where the transient activities are strong. Figure 8
displays the correlation coefficient and RMS difference for 200-hPa v’. (other quantities have
similar features and are not present.ed here). We can see that the agreement between ECMWF and
NCEP is systematically better in the Northern Hemisphere than in the Southern Hemisphere since

the correlation coefficient is larger and the RMS difference smaller.

From Fig. 8 we can also observe a temporal evolution of the agreement between ECMWF
and NCEP. For the Northern Hemisphere, the agreement is good and stable for the whole period
although a small tendency of improvement is present. A visible seasonal cycle can be identified
in both Figs. 8a and 8b with degraded agreement in summer season. For the Southern

Hemisphere, the seasonal cycle is less important. The tendency of improvement is large. Before
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1989, we can observe large dispersion with bad correlation coefficients in many cases. The
agreement between ECMWF and NCERP is particularly low for 1980 with a small correlation
coefficient (less than 0.8) reached in March. From 1989 to the end, good agreement is obtained
and the dispersion is also reduced for both space-pattern correlation and RMS difference. This
feature is probably related to the fact that the observation network has been considerably

improved in the recent years.

4 Conclusions

We have compared the reanalyses issued respectively by ECMWF and NCEP. Generally
speaking, the mean fields are quite similar in the two datasets, although some systematic

differences can be noticed. The temperature in ECMWF is 2.5°C colder than in NCEP at the

equatorial tropopause. However the ECMWF’s tropical troposphere is warmer than that of
NCEP. Over Antarctica, NCEP is very cold in winter. This makes the sea-level pressure,
extrapolated by using surface pressure and ambient air temperature, excessively high for

Antarctica in winter (not shown here).

For the transient kinetic energy, meridional transient fluxes of angular momentum and
sensible heat, the two datasets agree with each other in the Northern Hemisphere. However over

the data-poor regions of the Southern Hemisphere, the transient properties in NCEP are

systematically smaller than those in ECMWF. The discrepancy is about 20%. For the term v’T”,
this discrepancy can reach 50% at high layers of the atmosphere during the Southern Hemisphere
winter. By calculating the day-to-day correlation coefficient (space-pattern correlation or

temporal correlation), we have demonstrated that these differences are mainly due to the smaller
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amplitude of transient waves in NCEP. However their occurrence frequency and their temporal

evolution show good agreement between the two datasets.

At this st;age, we can not judge the relative quality of NCEP and ECMWF reanalyses, but
we suggest that the ECMWF’s results could be closer to reality since the spatial resolution of its
data assimilation system is better and this permits it to resolve baroclinic instability in a more
satisfactory way. Several recent studies based on atmospheric general circulation models, for
example, Boyle (1993), Williamson et al. (1995), or Boer and Denis (1997), show clearly the

dependence of baroclinic instability on the resolution of models.

Given the important differences between NCEP and ECMWEF reanalyseé in terms of
atmospheri‘c transient acti‘)ities, it is interesting to utilize these data to investigate the behaviors
of synoptic flow in the Southern Hemisphere, including intraseasonal oscillations (Berbery and
Vera 1996 ; Nogués-Paegle and Mo 1997 ; Sinclair et al. 1997), and especially to document their
differences. This will be reported in a future paper. For the next stage, we will also investigate
the hydrological cycle of the two datasets, since the works presented by Wang and Paegle (1996),
Mo and Higgins (1996) show clearly that the hydrological cycle is still more sensitive to the

model’s performance and the quality of data assimilation system.
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Figure Caption :

Fig. 1. Latitude-pressure diagram showing the annual-mean temperature difference (K) between

ECMWEF and NCEP. Contour interval is 0.5 but isoline 0 is omitted.

Fig. 2. Latitude-pressure diagrams of the zonally-averaged transient kinetic energy, K, , for

respectively NCEP (left panels, a and b) and ECMWEF (right panels, ¢ and d). Two seasons are
shown : DJF (December-January-February) at top and JJA (June-July-August) at bottom. Unit is
2 S-2

m” s™. Contour interval is 20.

Fig. 3. (a) 200-hPa annual-mean transient kinetic energy K, diagnosed from NCEP. (b)

Difference between ECMWF and NCEP. (c) RMS (root-mean-square) difference between

1 2
ECMWEF and NCEP. RMS difference is calculated by JFZ (x, —_ y_) , where x; and y, are

the loading of two vectors (time series) of length N (5479 days).

Fig. 4. Latitude-pressure diagrams of the zonally-averaged transient flux of westerly angular

momentum v'u’ (m” s2). Contour interval is 10. The panel’s disposition is the same as in Fig. 2.

Fig. 5. The same as Fig. 4, but for the transient flux of sensible heat VT’ (Km s']). Contour

interval is 2.

Fig. 6. Longitude-pressure diagrams showing the transient flux of sensible heat, v'7” (K m s™),

averaged from 40°S to 70°S. Contour interval is 2.

Fig. 7. Correlation map between ECMWF and NCEP, calculated through day-to-day 200-hPa

transient kinetic energy. Contour interval is 0.05.
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Fig. 8. (a) Day-to-day time evolution of space-pattern correlation coefficient calculated for

respectively 30°N-70°N and 30°S-70°S. (b) As in (a) but for the RMS difference. Unit is m s™.
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