Introduction	Results	Conclusions	Bonus

Present-day biases and future changes in intra-seasonal variability of European temperatures A pilot study with CNRM and IPSL models

Julien Cattiaux, Hervé Douville, Fabrice Chauvin and Chloé Plante.

CNRM/Météo-France, Toulouse, France.

June 23, 2011

J. Cattiaux et al. (CNRM)

European temperatures in CMIP5

Introduction •	Results 00	Conclusions O	Bonus 000
Motivatio	ns		
1.0 0.8 5 0.6 0.6 0.4 0.2 0.0 -6	temperatures in CMIP3 models (DJF).	 Understanding Present-day biases in mean state & variability (extreme Uncertainties in fu projections (sensiti to enhanced radiat forcing). 	es). ture ivity
1.0- 0.8- 0.6- 0.2- 0.0- -4 - ERA-4	0 1961-2000 2046-2065	How? By decomposing biases changes into dynamical (weather regimes) and physical contributions.	

ERA-40 1961–2000 2046–2065 2081–2100

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへ⊙

Mean seasonal temperature biases: amip vs. E-OBS over 1979-2008.

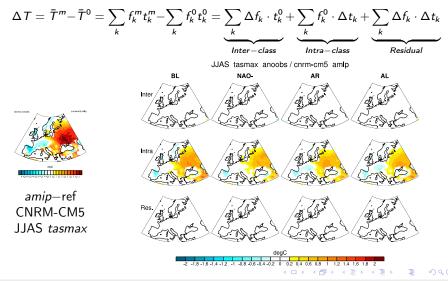
E-OBS (raw) CNRM-CM5 (bias) IPSL-CM5A-LR (bias) JJAS tasmax DJFM tasmin

Introduction	Results	Conclusions	Bonus
0	00	0	000
Prophing up procept	day tomporature	hissos	

Breaking-up present-day temperature biases

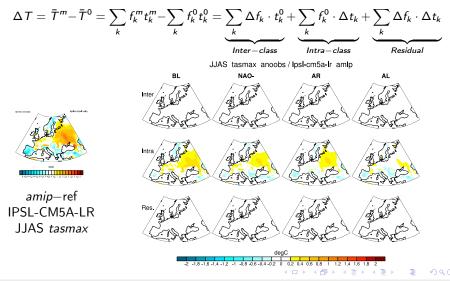
$$\Delta T = \bar{T}^m - \bar{T}^0 = \sum_k f_k^m t_k^m - \sum_k f_k^0 t_k^0 = \underbrace{\sum_k \Delta f_k \cdot t_k^0}_{Inter-class} + \underbrace{\sum_k \Delta f_k \cdot \Delta t_k}_{Intra-class} + \underbrace{\sum_k \Delta f_k \cdot \Delta t_k}_{Residual}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで


amip—ref CNRM-CM5 JJAS *tasmax*

J. Cattiaux et al. (CNRM)

European temperatures in CMIP5


	duction	Results	Conclusions	Bonus
0		0	0	000
D.	alling up procent	day tamanakatuka	hisson	

Breaking-up present-day temperature biases

Introduction	Results	Conclusions	Bonus
0	00	0	000
Ducalda		hinner	

Breaking-up present-day temperature biases

Introduction	Results	Conclusions	Bonus
O	00	●	000
So?			

Summary

- Methodology for decomposing biases / future changes in both mean and extreme temperatures into dynamical & physical contributions.
- First results for CNRM-CM5 & IPSL-CM5A-LR (amip):
 - ΔT almost exclusively due to intra-class contributions.
 - Intra-class ΔT can vary from one regime to another, and have to be linked to biases in radiative fluxes and processes.

Prospects

- Better understanding of intra-class biases:
 - Estimating the dynamical part due to the WRs methodology.
 - Investigating surface energy budgets (clouds, albedo, snow etc.).
- Apply the methodology to all CFMIP2 models, and gather the multi-model information (e.g., highlight general features).
- Special issue: "only" CNRM & IPSL, submission in September?

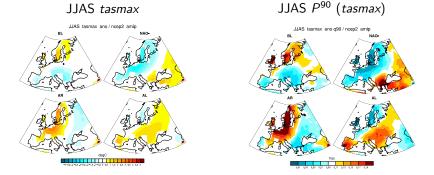
Intra-class mean temperatures t_k

JJAS tasmax

• $t_k = \frac{1}{N_k} \sum_{i \in \Omega_k} T_i$, with Ω_k the N_k days spent in WR_k .

• Overall $\overline{T} = \frac{1}{N} \sum_{i} T_{i} = \sum_{k} f_{k} t_{k}$, with $f_{k} = \frac{N_{k}}{N}$ frequency of WR_{k} .

DJFM tasmin DJFM tasmin ano / ncep2 amip


EOBS, 1979-2008, based on NCEP2 classification.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

• $p_k^{90} = \frac{n(T > T^{90})_k}{N_k}$, with N_k the number of days spent in WR_k .

• Overall $P^{90} = 10\% = \sum_k f_k p_k^{90}$, with f_k frequency of WR_k .

EOBS, 1979-2008, based on NCEP2 classification.

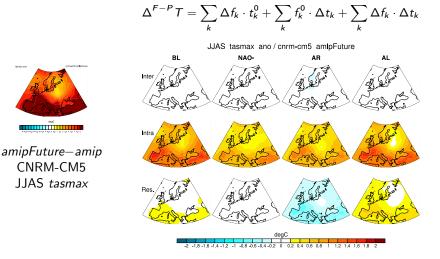
Introduction	Results	Conclusions	Bonus
O	00		00●
Brooking up future	tomporature inc	roacoc	

Breaking up future temperature increases

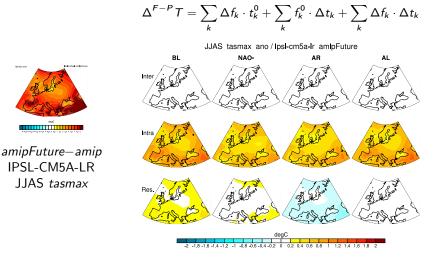
$$\Delta^{F-P}T = \sum_{k} \Delta f_k \cdot t_k^0 + \sum_{k} f_k^0 \cdot \Delta t_k + \sum_{k} \Delta f_k \cdot \Delta t_k$$

amipFuture—amip CNRM-CM5 JJAS tasmax

J. Cattiaux et al. (CNRM)


European temperatures in CMIP5

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで


Introduction Results Conclusions Bonus 0 00 0 00 00

Breaking up future temperature increases

Introduction	Results	Conclusions	Bonus
O	00	O	00●
Brooking up future	tomporature inc	KARCAC	

Breaking up future temperature increases

▲口▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで