

QUEST : **Q**uantifying **U**ncertainties and

Enhancing the Speed of climate model Tuning

Pls : Juliette Mignot, Frédéric Hourdin and Julie Deshayes

QUEST : structure of project description

- 2.1 Scientific justification
- 2.2 Description of workpackages
- 2.3 Validation
- 2.4 Software and attributes
- 2.5 Data Management Plan
- 2.6 Performance of code
 - 3. Project management, communication plan...

many thanks to groupe plateforme

Within IPSL-CM6A-LR, we have identified 3 types of uncertainty in climate model simulations :

the **structural uncertainty**, related to each component : grid resolution, physics, numerical choices...

the **parametric uncertainty**, related to sub-grid-scale processes within each component and processes of interaction between components (hence non-scale aware parameters to be tuned) ;

the **intrinsic uncertainty** due to the chaotic nature of climate.

32 members in CMIP6 historical ensemble
5-11 members per ScenarioMIP
10 members per DAMIP
10 members per GMMIP
4 members per RFMIP

QUEST explored **structural uncertainty** in IPSL-CM6A-LR through new configurations with increased resolution in ocean and/or atmosphere components :

•

WP1. Physical tuning of ocean / sea-ice parameters of Atm LR,Ocean LR

blue ocean parameters (inter-comparing with UK GC3.1), Sea ice parameters (amax, LIM3 mono-category ...)...

+ Impact of GrIS melting on oceanic circulation

+ Impact of persistent atmospheric conditions (NAO) on decadal variability

WP2. Automatic turning of atmospheric parameters

waves of automatic tuning, LMDz only then new tuning of LMDz, in coupled mode

with Atm MR,Ocean LR

+ five new {pi,+4CO2} couples of **Atm LR,Ocean LR** simulations with new tuning to explore different ECS

WP3. Exploring Atm MR,Ocean MR

+ testing sensitivity to meso-scale parameterization (GM)

WP4. Production of CMIP6 DECK

with new tuning of Atm LR,Ocean LR (hopefully reduced ECS)

with **Atm MR,Ocean LR** , same physics and tuning as LR

with Atm MR, Ocean LR , new tuning

with Atm MR, Ocean MR, with GM parameterization

	on SKL (for development, no workflow)		on AMD (for production, with workflow)	
Atm LR, Ocean LR	960 cores	18,000 hCPU / 10 yr	2109 cores	20,000 hCPU / 10 yr
Atm MR, Ocean LR	1 800 cores	32,000 hCPU / 10 yr	2392 cores	41,000 hCPU / 10 yr
Atm MR, Ocean MR	4 720 cores	100,300 hCPU / 10 yr	(ongoing)	(ongoing)

SST anomalies from WOA13 in Atm LR,Ocean LR , Atm MR,Ocean LR and Atm MR,Ocean MR

can you guess which model produced which figure ?

8

5

3

1

0

-1

-3

-5

-8

answer : will be given at QUEST meeting mid-january !

QUEST : Lessons learnt (1/2)

when running a new configuration, there are multiple variables to check, in mean state and anomalies, at all timescales (seasonal to centennial), which is extremely time consuming

 coordinate all possible diagnostics (intermonitoring, C-ESM-EP, atlas LMDz...) to save time in preliminary evaluation

transitioning from pdControl (ie today) to piControl (ie 1850's) conditions is not straightforward

- systematically verify simulations in piControl conditions, running couples of {pd,pi} in parallel for example
- model development involves both technical and scientific actions, which must be coordinated
 - associate engineers and scientists in frequent (1 / week) short meetings (<1h) with live reports</p>

QUEST : Lessons learnt (2/2)

developing new configurations to quantify uncertainties, employing automatic tuning for the atmospheric component and speeding up tuning

➡ yes we can !

Thanks to Laurent, Nicolas, Eliott, Christian, Ionela, Arnaud, Jerome, Brady + all groupe plateforme

https://forge.ipsl.jussieu.fr/igcmg/wiki/IPSLCM6/QUEST