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ABSTRACT

A number of processes are proposed to explain the time and space variability
of the onset and decay of the spring phytoplankton bloom. This is done in the
modeling framework of a case study most representative of the northwestern
Mediterranean Sea (MEDOC area). The strategy followed is to isolate the different
possible sources of variability (oceanic mesoscale dynamics, spring warming, wind
bursts) in a series of process experiments (no flux, warming and wind experiments).
The analysis of these experiments provides information for the analysis of a more
realistic experiment, forced with daily atmospheric data (high-frequency
experiment). On the basis of this study, we propose a categorization of the processes
that control the spring bloom, in terms of their impact on the onset and decay of the

bloom, and of the time and space scales on which they apply.

INTRODUCTION

It has been recognized for decades that the restratification of the water column
is a prerequisite for the onset of spring phytoplankton blooms in offshore waters of
temperate regions (Gran and Braarud, 1935 ; Sverdrup,1953). The most classical
scenario is that nutrients are brought to the surface during winter mixing, and are
then continuously utilized during spring, when the water column becomes more
stable. However, studies in the Mediterranean Sea and in the North Atlantic provide
evidence for commencement of blooms prior to seasonal restratification (Garside
and Garside, 1993 ; Marty, 1993 ; Townsend et al., 1992), as well as for variable
bloom timing (André, 1990 ; Townsend er al, 1994 ; Williams, 1988). The
modeling study of Townsend et al. (1994) showed that the spring bloom can begin
following the winter period of convective mixing, and prior to the vernal
development of vertical water column stability, provided that the wind speed and the
cloud cover are both weak enough. Restratification induced by mesoscale eddies is
another way to sustain the onset of a bloom prior to the spring restratification, as
emphasized by the modeling study of Lévy er al. (1998a, hereafter referred as
LMM).



In the Mediterranean Sea and the North Atlantic, the depletion of nutrients is
the process commonly evoked to explain the bloom decay (Garside and Garside,
1993 ; Jacques et al., 1976). However, continuous records (Marra, 1995) and time
series (Williams, 1988) of phytoplankton clearly show that the spring bloom does
not always consist of a single steady increase of phytoplankton until surface nutrients
are depleted, but must often consists of several spring bloom pulses. Townsend ef al.
(1994) argue that a vertical mixing event following the uptake of some portion of
the available nutrient could cause the bloom to crash, and at the same time serve to
replenish the surface nutrient field, thus allowing a subsequent bloom to occur.
Essentially at the beginning of spring, when the water column is weakly stabilized, a
wind burst is sufficient to initiate such an event. On the other hand, the study of
McGillicuddy and Robinson (1997) in the oligotrophic Sargasso Sea has shown that
eddies can advect a significant amount of nutrients to the depleted surface. In
consideration of the strong eddy variability shown by the spring sea-color images in
the Mediterranean Sea (André and Morel, 1991) or in the North Atlantic (Robinson
et al., 1993), it is conceivable that eddies continue to enrich the surface when it is
not yet depleted, leave their signature on the surface phytoplankton field, and locally

delay the decay of the bloom.

The present consensus on the spring bloom is therefore no longer to consider it
as a steady phenomenon, but as a phenomenon that shows strong space and time
variabilities, from its first onset to its final decay. Previous modelling studies
strongly suggest that attempts to predict primary productivity during the bloom will
be inaccurate if small scale processes such as wind bursts or eddies are not taken into
account. For instance, Lévy et al. (1998b) estimated that the eddy effect on the
shoaling of the mixed layer could increase productivity by up to a factor of four
during the onset of the bloom in the Mediterranean Sea (before the heat budget at the
ocean surface has become positive). McGillicuddy ez al. (1995) showed that vertical
velocities associated with mesoscale eddies could enhance nutrients by one order of
magnitude during the spring bloom in the North Atlantic, and therefore substantially
increase productivity in localized regions for periods of weeks. Using a one-

dimensional ecosystem model forced with a prescribed mixed layer near Bermuda,
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Bisset er al. (1994) highlighted that using monthly instead of daily mixed-layer

estimates could lead to a 25% under-estimation of new production.

Within this context, the aim of this paper is to study the joint impact of
mesoscale activity, spring warming and wind bursts on the onset and decay of the
spring phytoplankton bloom. This is done in the modeling framework of a case study
most representative of the northwestern Mediterranean Sea (MEDOC area). This
region is one of the few in the world’s oceans where deep water formation occurs
(Medoc group, 1970) ; during winter, a deep-mixed patch of dense water is formed,
whose breakup involves mesoscale eddies (Gascard, 1978). The situation explored in
this work is the period of sinking and spreading of this dense water patch,
characterized by important eddy activity. During that period, the air-sea heat budget
shows a mean seasonal trend from strong winter buoyancy losses (which drive deep
convection) to spring warming (which builds up the seasonal thermocline). This
mean trend is perturbed by strong wind bursts (Mistral, Tramontane) associated with
large heat losses (For instance Fig. 1, end of February and end of March). In a
previous study dedicated to the understanding of the spring bloom variability in the
MEDOC region (LMM), these highly variable fluxes were not considered in order to
isolate and understand the sole impact of the mesoscale eddy dynamics on primary
production during the onset of the bloom, before nutrients are depleted. In this
second paper, the role of the atmospheric forcing over this period of very energetic
eddy dynamics is investigated. A set of experiments of increasing complexity is
presented and analyzed. The main results obtained in LMM are first briefly
summarized. Next, the impact of the spring increase of solar radiation is assessed,
which permits to investigate the decay of the bloom and the role of mesoscale eddies
during this decay. We then discuss the effects of the Ekman transport induced by a
constant wind. Finally, in order to analyze the impact of the high-frequency
variability of the atmospheric forcing on the spring bloom, real forcing are used ; the

analyze relies on the results of the previous experiments and on in situ data.



DESCRIPTION OF THE EXPERIMENTS

The model, the basin configuration, the initial conditions and the spin-up are
identical in all experiments. The model consists of a NPZD (Nutrient,
Phytoplankton, Zooplankton, Detritus) biogeochemical model (described in the
Appendix), embedded in an eddy-resolving primitive equation ocean model (Madec
et al., 1991a ; Delecluse et al., 1993). Vertical eddy coefficients are computed from
an embedded 1.5 turbulent closure model (Blanke and Delecluse, 1993). The
Eulerian time evolution of any of the four biogeochemical variable C' is controlled
by biogeochemical processes S(C), advection and vertical diffusion :

oc _ o, 8C
=S+ V.UC)+ | k. azj (1)

where U, the velocity vector, and k , the diffusion coefficient, are computed

by the physical model. A positive definite transport scheme is used for the advection
of biological tracers (Smolarkiewicz and Clark, 1986). This scheme is slightly

diffusive, so that no explicit horizontal diffusion operator is used.

The domain is a closed basin of 300 km x 300 km x 2500 m. The initial state is
composed of a patch of dense water (c=29.1), extending from the surface down to
the bottom and surrounded by a stratified ocean, which is characteristic of the winter
situation (Medoc group, 1970 ; Leaman and Schott, 1987). The density of the
stratified area is homogeneously set to 6g=28.4 over the first 80 m, and gradually
increases to the value of 29.1 at the bottom. The first three Rossby radius of
deformation corresponding to this density profile are 8.4, 3.8 and 2.5 km. Therefore,
in order to resolve the baroclinic mesoscale eddies, the horizontal grid spacing is set
to 2.5 km. The vertical grid spacing varies from 10 to 25 m in the upper 130 m, and

reaches 500 m near the ocean bottom. The time step is 8 minutes.

All experiments start at day nine, after a dynamical spin-up phase of eight
days, and are performed for twenty-five days after the spin-up phase. The
initialization of the biogeochemical variables is done after the spin-up phase. High

density (in the center of the convective region) is correlated with high nitrate and



low phytoplankton concentrations according to Coste et al. (1972) and Jacques et al.
(1973), such that nitrate and phytoplankton concentrations in the denser waters are 6
and 0.01 mmole m3 respectively, while they worth 1 and 0.1 mmole m=3 in the
lighter waters. Zooplankton and detritus are uniformly set to low values, 0.015 and

0.1 mmole m-3, respectively.

Experiments differ by the atmospheric forcings applied (Table 1). Atmospheric
forcings consist of a net heat flux, split up into a penetrative solar heat flux and a
non-penetrative flux, and wind stress. They are applied after the spin-up phase, with
no space variation, which is a reasonable approximation considering the small
horizontal extent of the domain. In the experiment presented in LMM, both the
penetrative and the non-penetrative parts of the heat flux are kept constant in space
and time, and compensate each other (+150 and -150 W m-2, respectively). The net
heat flux is thus zero, and there is no wind ; the main sources of vertical mixing are
therefore the static instabilities generated by the penetration of the solar radiation.
Below, this experiment will be abusively referred as the no flux experiment, whereas

in fact it is a no net flux experiment.

Meteorological models indicate that the increase of the solar heat flux during
February and March in the Medoc area has a mean trend of 2W m-2d-!. During the
same period, the non-solar flux presents a high-frequency variability related to the
occurrence of wind bursts (Fig. 1). In order to account for the impact of the mean
spring warming, a warming experiment is performed where the model is forced with
an increasing solar heat flux, which has an initial value of 150 W m-2 and a constant
trend of 2W m-2 d-1, and a constant non-solar heat flux of -150 W m-2 (i.e. the same
value as in the no flux experiment). The net surface flux thus increases linearly with

time from 0 to 70 W m-2, while the wind stress remains zero.

In order to assess the impact of the wind stress, a wind experiment is
performed, forced by the same heat forcing as in the no flux experiment and by an
additional non-zero wind stress. This wind is oriented in the SE direction (i.e. the
direction of the Mistral wind), thus minimizing the amplitude of the coastal Kelvin

waves. Its magnitude is 0.15 Pa, corresponding to an average value for a wind burst
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in winter (i.e. Fig. 1). This forcing is somehow unrealistic, as the strong heat losses
often associated with Mistral burst are not taken into account and as the wind stress
is applied during a whole month while a wind burst rarely exceeds a week. This is
deliberately done in order to solely study the impact of the wind induced Ekman
transport. The possible effects of Ekman pumping on productivity (Williams and
Follows, 1998 ; Andersen and Prieur, 1998) are not addressed in this study.

Finally, in order to take into account all the variability of the atmospheric
forcing, a high-frequency experiment is performed, where the model is forced with
the daily ECMWEF heat fluxes and wind stress over the MEDOC area from February
20 to March 15, 1990 (Fig. 1). This period is characterized by three wind bursts, the
first one between days 17 and 18 of the experiment, the second one between days 19
and 23, and the third one between days 27 and 29. These typical Mistral wind bursts
are oriented in the SE direction. The first and third ones have the same magnitude as
the wind of the wind experiment. The second one is the most intense, and is
associated with important heat losses (-400 Wm-2). The time integrated heat flux
exchanged with the atmosphere over the 25-day model run is the same as in the
warming experiment. However, unlike in the warming experiment, the warming is
not gradual ; it is much more intense between days 9 to 18 and 23 to 33, and is

interrupted by a period of heat loss.

MESOSCALE DYNAMICS IMPACT

The impact of the mesoscale dynamics on the onset of the spring bloom is
fully described in LMM. The main results of this study are summarized below.
These results are based on the analysis of the no flux experiment. From a dynamical
point of view, the main features of the collapse and spreading of a dense water patch
are reproduced by the experiment : due to the steep slope of the isopycnals at the
edge of the dense water patch, and to the relevant shears in the velocity field, the
initial situation is unstable (Pedlosky, 1987) ; the release of the available potential
energy contained within the dense-water patch occurs through the development of

mixed barotropic-baroclinic instabilities. The signature of these instabilities on the



surface density field appears in the form of meanders along the front that defines the
neutrally stable column. A time series of the surface density field (Fig. 2) shows the
development of seven meanders at the outer edge of the convective region (day 12)
having wavelengths of ~50 km (corresponding to the first baroclinic mode of
oscillation), which eventually break into seven cyclonic eddies. Such meanders have
been observed by in situ measurements (Gascard, 1978 ; Gaillard et al., 1997) and
their role in the sinking and spreading of the initial chimney was emphasized by the
modeling study of Madec et al. (1991a). Basically, they serve as vehicles for the
transfer of water masses, by sinking the denser waters out of the convective zone and
at the same time upwelling lighter peripheral waters towards the center.
Consequently, these mesoscale instabilities are responsible for the collapse of the
dense water patch in approximately one month, in agreement with the restratification
time scale estimated from Jones and Marshall (1997). Furthermore, they are
associated with strong mesoscale upward motions (tens of meter per day) that are
responsible for the shoaling of the mixing layer in the trough of the meanders (Fig.
3). As sunlight is the main factor regulating primary production during the onset of
the bloom, this shoaling increases the mean exposure time of the phytoplankton cells
and thus enhances productivity. Consequently, the majority of primary production is
obtained in the areas of shallow mixed-layer, i.e. essentially at the edge of the patch.
However, mesoscale instabilities are also responsible for a rearrangement of
phytoplankton distributions ; following the water mass circulation, phytoplankton is
transported from the trough towards the crest of the meanders, which explains the
observed crest-like phytoplankton distribution (Fig. 4). This rapid transport (a couple

of days) decorrelates phytoplankton biomass and primary production.

SPRING WARMING IMPACT

The impact of the spring warming is assessed by comparing the warming
experiment with the no flux experiment. In the warming experiment, the response to
the uniform warming is non-symmetrical. Indeed, the peripheral stratified waters are
warmed more easily than the homogeneous central patch ; as a consequence, the

horizontal density gradient between these two areas is increased, which increases the
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unstable nature of the flow, in agreement with the hypothesis of Strass et al. (1992).
This effect is weak, as the heating only affects the first layers, and only slightly
modifies the overall slope of the isopycnals and the associated Rossby radius of
deformation. However, it explains that the instabilities are not affected when a
uniform warming is applied (Fig. 2). Madec et al. (1991b) report an opposite
response to a homogeneous thermohaline forcing applied over a dense water patch ;
in their case, a uniform cooling was responsible for a significant delay in the

development of the instabilities, as the forcing was affecting deeper layers.

By contrast, the increase of the solar heat flux progressively and globally
warms the surface waters of the basin, resulting in the formation of a seasonal
thermocline over the convective area. In the warming experiment, the restratification
of the water column is thus the result of two different processes : the dynamical
restratification induced by the action of the mesoscale instabilities, and the thermal
restratification achieved by the solar warming of the surface waters. As the warming
has little effect on the instabilities, the thermal and dynamical restratifications are
complementary rather than competitive, and restratification occurs more rapidly
(about one week compared to one month over the convective site). The mixing-layer
depth time series illustrates this result (Fig. 3); the mixing layer maintains the
spatial structure imposed by the mesoscale motions, and in addition is globally
shallower and shallower, which weakens the amplitude of its mesoscale variability.
For instance, in the no flux experiment (day 32), the mixing layer is still deep in the
central convective region (>100 m), and between 20 and 70 m at its periphery, while
in the warming experiment it is always shallower than 50 m, and ranges between 20

and 40 m in the periphery region.

As productivity during the onset of the bloom is controlled by the depth of the
mixing layer, this faster and stronger restratification has the effect of increasing
productivity. This is illustrated by the comparison of the averaged productivity time
evolution for the warming and the no flux experiments (Fig. 5). A second reason for
the higher productivity levels observed in the warming experiment is the increase of

the solar radiation, and therefore of the amount of light available for photosynthesis.



The comparison of the two phytoplankton time series (Fig. 4) shows that this higher
productivity gives rise to significantly higher phytoplankton concentrations. On the
other hand, the warming has little effect on the mesoscale distribution of
phytoplankton. Indeed, as emphasized by the no flux experiment, the phytoplankton
distribution is highly constrained by the transport through the instabilities, from the
trough towards the crest of the meanders. The similar structures in the phytoplankton
distributions between the two experiments thus results from the similarity in the

dynamics of the instabilities.

In both experiments, the increase of the averaged productivity (i.e. the onset of
the bloom) is followed by a decrease, marking the beginning of the bloom decay
(Fig 5). However, this decrease has different origins in the two experiments. In the
no flux experiment, the decay results from the diminution of the mixing-layer depth
variance with time, in relation to the progressive dissipation of the instabilities. In
other words, the productivity diminishes because the spatial extend of the productive
areas (areas of minimal mixing-layer depth) diminishes with time (Fig. 3). In the
warming experiment, the thermodynamic restratification causes the average mixing-
layer depth to strongly decrease during the course of the experiment (Fig. 3); as a
result, vertical mixing becomes less limiting. On the other hand, nutrients are
exhausted faster during the bloom onset because productivity is more intense (Fig.
5). This creates a nutrient stress on productivity, which is not the case in the no flux
experiment. Surface nutrient concentration time series for the two experiments (Fig.
6) show that nutrient concentrations remain higher than the half-saturation constant
(0.5 mmole m3) during the whole duration of the no flux experiment, while they fall
below this value by day 24 in the warming experiment. In the warming experiment,

the bloom decay is thus clearly the result of a nutrient stress at the surface.

However, the depletion of nutrients in the warming experiment is not
homogeneous (Fig. 6), and partly counter-balanced by the action of the instabilities.
The nutrient surface field shows strong mesoscale variability, with maxima located
within the eddies. These nutrient maxima are correlated to the density maxima (Fig.
2). They result from the vertical transport of dense, rich waters from below. In order

to evaluate the importance of this vertical transport, the relative strengths of physical
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and biological processes with regards to the nutrient concentrations are assessed. The
biological (production minus remineralization) and dynamical (advection plus
diffusion) terms of the surface nutrient time evolution equation (Eq. 1) are integrated
over time and averaged over the circular band extending between 35 and 100 km
from the center (delimited by the dashed lines on Fig. 6), which covers the instability
area (Fig. 7). The results of this procedure are given in units of a nutrient
concentration per cubic meter. The time integrated biological terms represent the
amount of nutrient that would be obtained if the physical transport was cut off while
keeping the same level of productivity (“biological” nutrients), while time integrated
dynamical terms represent the amount of nutrient that would be observed if the
biological activity was turned off, while keeping the same tracer gradients
(“dynamical” nutrients). By construction, the sum of the “biological” and
“dynamical” nutrients equals the actual surface nutrient concentration, which is also
depicted on Figure 7 for comparison. The average surface concentration of nutrients
in the instability area decreases from about 3 down to 0.1 mmoleN m-3 within a
month. During that period, biological processes clearly tend to decrease the stock of
nutrients (Fig. 7, dashed line), while dynamical processes tend to increase it (Fig. 7,
doted line). The overall decrease results from the faster consumption by productivity
compared to the dynamical enrichment. The integrated input of nutrients at the
surface by dynamical processes during the warming experiment is 1.8 mmoleN m-3,
representing about 40% of the total biological utilization during the same period.
Productivity during the bloom is thus strongly sustained by the dynamical input of
nutrients that occurs in the instability region. Furthermore, our diagnostic shows that
the dynamical input of nutrients has the effect of delaying the end of the bloom.
Indeed, “biological” nutrients are totally depleted one week before the actual
nutrients, meaning that the duration of the bloom is extended by one week by the

fertilizing action of the instabilities.

WIND STRESS IMPACT

The impact of the wind stress is assessed by comparing the wind experiment

with the no flux experiment. In the wind experiment, the wind generates an Ekman
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transport in the top 50 meters from the NE (upper right) to the SW (lower left) of the
domain, i.e. in the direction perpendicular to the wind direction. In the NE area, the
wind-driven transport supplies the convective area with light surface fluid from the
periphery. Vertical density gradients are enhanced, which weakens vertical mixing
and contributes to restratify the convective site. This EFkman restratification is much
more efficient than the dynamical restratification, and has a wider extend. In
contrast, dense water originating from the convective site are spread over in the SW
area. This generates static instabilities in the SW area and therefore vertical mixing.
In this area, the Ekman flux thus works against the dynamical restratification. These
results agree with those of Francks and Walstad (1997), who examined the effect of
the Ekman transport at a non-meandering ocean front. They are illustrated by the
mixing-layer depth field (Fig. 3). In the wind experiment, the mixing-layer depth
minima are located at the intersection between the instability area and the NE half of
the domain. They rotate to the north during the course of the experiment, because of
the advection by the mean cyclonic current around the convective site. By contrast,
in the SW half of the domain, the mixing-layer is deeper than in the no flux
experiment (days 16 and 24). The mode seven signature of the instabilities is still
clearly apparent on the surface density field (Fig. 2), although in the NE region,
surface density gradients are weakened by the lateral mixing with lighter waters.
This illustrates that contrary to the warming experiment, the dynamics associated
with the instabilities is modified by the forcing, even though the modification is
weak. The wind induced transport thus decorrelates the mixing layer from the action
of the instabilities, slightly modifies the transport by the instabilities, but does not

alter the mode of the instabilities.

Surface phytoplankton time series (Fig. 5) show that phytoplankton develops
mostly in the NE area, where the mixing-layer is the shallowest. The primary effect
of the Ekman transport on phytoplankton distribution is therefore to break its axial
symmetry (as for the density field). In the convective area, the minima of
phytoplankton rapidly vanish due to the fast Ekman restratification. The mean
phytoplankton concentration is increased, as in the warming experiment, in response

to this additional restratification. The typical feature of the phytoplankton
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distribution in the no flux experiment, with a minimum at the center and a maximum
around the convective area, is strongly altered ; at day 16, a biomass-rich area and a
biomass-poor area are next to one another ; at days 24 and 32, maxima of biomass
have shifted toward the center. Moreover, the mode seven signature of the
instabilities is still clearly visible in the surface phytoplankton field, even though it is
strongly damped in the mixing-layer depth field. This is particularly obvious at day
24, when the eddies are fully formed. Indeed, similarly to the no flux experiment,
these mesoscale patterns in the phytoplankton field are due to the transport of

phytoplankton by the instabilities.

Surface nutrients time series (Fig. 6) show no drastic nutrient depletion by the
end of the wind experiment, as in the no flux experiment. However, concentrations in
the NE area (between 0.5 and 1 mmole N m3) are clearly smaller than
concentrations in the SW area (> 1 mmole N m3). Two processes explain the
asymmetry. First, productivity is higher in the NE (because of the shallower mixing
layer) and thus nutrients are more rapidly used. Second, in the SW area, the Ekman
flux is directed from the cold side (rich in nutrients) to the warm side (poorer in
nutrients). This flux is responsible for a lateral transport of nutrients, from the dense
water patch to the SW. Such an enrichment of the surface layer by horizontal cross-
frontal transport of nutrients by an Ekman flux has also been emphasized in the case
of a non-meandering front (Francks and Walstad, 1997). It is much stronger than the
enrichment by vertical diffusion of nutrients that wind-surface current interactions
can induce (Klein and Coste, 1984) , and which is hardly perceptible here. The main
effects of the wind induced Ekman transport are to break the symmetry of the
problem, and in particular to modify the large scale distribution of phytoplankton,
without altering the wavelength of its mesoscale patterns. The Ekman flux is also
responsible for a horizontal spreading of nutrients at the surface, which can have a

significant implication in the productivity budget, as shown in the next section.
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CASE WITH A REALISTIC FORCING

The case with a realistic forcing is explored in the high-frequency experiment.
Until the first wind burst (day 17), the dynamical characteristics are similar to those
of the warming experiment, except with a stronger warming and a faster
restratification : the surface density time series (Fig. 8a) clearly show the presence of
instabilities, and the lightening of the surface waters. The time series of the density
section across the basin (Fig. 8b) illustrate the fast restratification over the
convective area (days 10 to 16). Soon after the beginning of the first warming period
(days 13 to 16), the mixing layer is homogeneously shallower than 15 m (Fig. 9).
The first wind burst distorts the surface density meanders, and deepens the mixing
layer in the SW area (day 19). This asymmetrical deepening is the result of the
Ekman transport, as emphasized by the wind experiment. Between days 19 and 25,
the strong heat loss erodes the central area, which is less stratified than the peripheral
area, and reinitiates deep convection. The surface waters are cooled, the central zone
is homogenized, and the mixing-layer deepens. Minima of mixing-layer depth
appear in the meander trough, as in the no flux experiment. Note that the surface
density meanders have recover their initial axial symmetry, illustrating that the
distortion induced by the wind did not occur below a certain depth (~50 m), in
agreement with Ekman’s theory. Starting from day 25, the system warms up again.
The impact of the third wind burst is perceptible in the NE-SW asymmetry of the
mixing-layer depth at day 28 (Fig. 9).

Figure 10 shows the time series of the surface phytoplankton concentration and
of the phytoplankton vertical distribution across the basin. Because of the rapid
restratification (days 10 to 16), phytoplankton grows very intensely. Maximum
concentrations are first found at the edge of the convective site (day 13), where
restratification starts, and then shift toward the center (richer in nutrients, day 16), as
in the no flux experiment, only much faster. Between days 19 and 25, during the
second wind burst, surface concentrations strongly decrease, particularly at the
center of the domain ; phytoplankton, which was confined to a thin surface layer, is
detrained at depth by the deepening of the mixing layer. The detrainment does not

damp the phytoplankton mesoscale variability ; indeed, as in all experiments,
14



mesoscale variability in the phytoplankton field is created by the mesoscale transport
of the cells. From day 25, restratification enables the start of a second bloom. Again,
phytoplankton starts developing at the border of the convective site ; then maxima

are both found at the center of the zone and within the eddies.

The high-frequency experiment therefore explores the consequences of the
variability of the atmospheric forcing on the spring bloom within a peculiar scenario,
where a strong wind burst associated with intense cooling perturbs the spring
warming. Consequently, two bloom pulses are separated by a period of export.
Figure 11 shows the time evolution of the averaged productivity and averaged
phytoplankton and nutrient surface concentrations. The two blooms obviously
appear on the phytoplankton and nutrient curves, which show the succession of two
phytoplankton maxima correlated with nutrient minima. The averaged productivity
evolution is more complex, and modulated by the three wind bursts in different
ways. From day 9 to day 15, productivity increases. Compared to the warming
experiment (Fig. 4), this increase is more abrupt because of the faster restratification.
The depletion of nutrients on day 16 causes the first decrease of productivity. As in
the warming experiment, this decrease is attenuated by the dynamical transport of
nutrients to the surface through the instabilities. The lateral Ekman transport
associated with the first wind burst on day 17 spreads nutrients initially confined
within the central area, as emphasized by the wind experiment. This globally
enriches the mixing layer in the SW in nutrients, and consequently increases
production. The second wind burst starting on day 19 is responsible for intense
vertical mixing that crashes the bloom, while fully replenishing the surface layer in
nutrients. Production starts again on day 22, right after the wind has stopped to blow.
The third wind burst on day 27 again provides new nutrients through Ekman
transport, this time before the surface is completely depleted, which enhances
productivity. Then productivity falls again by lack of nutrients, and is only sustained

by the fertilizing action of the eddies.

The high-frequency experiment reproduces important general characteristics of
the northwestern Mediterranean bloom : the total depletion of nutrients at the end of

the bloom (Coste et al., 1972 ; Marty, 1993), and the negligible role of zooplankton
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grazing for one month after the bloom onset (Nival et al, 1975) (not shown).
Regarding phytoplankton surface concentrations (Fig. 10a), two opposite situations
are alternatively simulated : a situation with a central poor area with local and eddy-
like patches richer in pigments (days 10, 13 and again on day 25), and a situation
characterized by a rich meandering central area, with concentrations reaching
5 mmoleN m3 (days 16, 19 and again on days 22 and 25). Coastal Zone Color
Scanner (CZCS) data analysis over the MEDOC area (André, 1990) show that these
two opposite configurations are indeed observed during winter and spring. However,
the high-frequency experiment evidences that they are associated with alternating
periods of production and export, and are clearly related to the occurrence of the
strong wind bursts. A wind event similar to the strong wind burst in the high-
Jrequency experiment has been observed by Andersen and Prieur (1998) in May
1995 in the same area. They report a decrease of phytoplankton concentration during
a wind burst, associated with significant particulate export, and followed by an
increase of productivity that they attribute to an enrichment of nutrients by vertical
mixing. Marra et al. (1990), Eppley and Renger (1988) and Hitchcock et al. (1987)

also report comparable effects of the wind.

A comparison of the results of the no flux experiment with in situ and CZCS
data is presented in LMM. However, because only space variability is accounted for
in the no flux experiment, the validation is focused on the space phytoplankton
distribution (typical patterns and wavelengths). Regarding space scales of variability,
the present work showed that taking atmospheric forcings into account does not call
these results into question ; indeed, the crest-like structures of the phytoplankton
field result from the transport of phytoplankton by the instabilities, which are not
very sensitive to the forcing. Furthermore, the surface phytoplankton field in the no
flux experiment is characterized by the presence of a permanent thin band of
maximum concentrations around the convective site (Fig. 5). This feature is
validated in LMM by comparison with the in situ data of Nival et al. (1972);
however, the fact that it has never been observed from space (André, pers. comm.)
was puzzling. Now, with the results of the high-frequency experiment, we know that

a variable atmospheric forcing makes this maximum phytoplankton band very
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transient (it appears only on days 13 and 25), which can explain why it has been

missed in the CZCS images.

DISCUSSION AND CONCLUSION

Several processes responsible for the variability of the spring phytoplankton
bloom in the MEDOC area have been identified using the step-wise progression of
model experiments. The strategy used was to isolate the different possible sources of
variability (oceanic mesoscale dynamics, spring warming, wind bursts) in a series of
numerical process experiments (no flux, warming and wind). The analysis of these
experiments provided information for the analysis of a more realistic experiment
(high-frequency), in which all the variability was accounted for. On the basis of
these results, we propose a categorization of the processes that control the spring
bloom in the MEDOC area, in terms of their impact on the onset and decay of the

bloom, and of the time and space scales on which they apply.

The restratification of the water column is the necessary condition for the onset
of spring blooms. This study has emphasized the role of three restratificaying agents
that work on different time and space scales. The thermal restratification is induced
by the progressive increase of the solar radiation between winter and spring. It
applies to large space and time scales (basin and season), but is also subject to high-
frequency time variability (days), associated with the occurrence of wind bursts. The
Ekman restratification results from the wind induced Ekman flux of light waters
across a strong density gradient. It applies to medium space scales, typically the
scale of a front (50 km), and on small time scales, given by the duration of a wind
burst (2-3 days). The dynamical restratification is achieved by the mesoscale eddies
that advect light waters over denser ones. It applies to small space scales, given by
the scale of the eddies (20 km), and longer time scales, given by the decay time of
the instabilities (1 month). Furthermore, Ekman and dynamical restratification can

occur before vernal warming, and thus cause the bloom to start earlier in the season.

The decay of the bloom is subject to even more variability, as it can originate

from the destratification of the water column or from the depletion of nutrients, but
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can also be counter-balanced by further restratification and nutrient inputs. Again, a
variety of time and space scales are in play. Destratification is progressive and
applies to small space scales when it is associated with the decay of mesoscale
instabilities (case of the no flux experiment). It is very sudden and applies to larger
space scales when it is due to a strong wind bursts (case of the high-frequency
experiment). However, in this case, the entrainment originating from the wind event
is also responsible for an export of phytoplankton, and for the surface nutrient
replenishment, which allows a second bloom to occur just after the wind burst. In the
example of the high-frequency experiment, two bloom pulses are separated by a
wind burst in that manner. Productivity before the strong wind burst is
approximately 80 mmoleN m2 (days 9 to 21, Fig. 11). Thirty percent of this
production is exported during the wind burst, within 3 days. At the same time, the
surface nutrient replenishment is 15 mmoleN m?2, which represents 25% of the
surface productivity following this event, 60 mmoleN m—2 (days 22 to 32, Fig. 11).
In such a case, the actual productivity is thus significantly higher than the
productivity estimated from the nutrient depletion budget between the beginning and
the end of the experiment. However, such productivity and export events strongly
depend on the detail of the forcing variability. The strong wind burst in the high-
frequency experiment has a particularly spectacular impact because it happens right
after nutrients at the surface have almost entirely been depleted by the biology. A
similar wind burst at the beginning of the experiment would have had a much

smaller impact.

The decay of the bloom can also be delayed by dynamical inputs of nutrients
that occur on smaller space scales, but which still can significantly raise the global
productivity budget. On the space and time scales of eddies, it has been shown that
mesoscale instabilities have a fertilizing effect, most remarkable during the decay of
the bloom, when nutrients become significantly depleted from the surface and
vertical nutrient gradients are large. In the case of the warming experiment,
mesoscale transport sustains up to 40% of productivity, and delays the decay of the
bloom by about one week. Other case studies have also emphasized this fertilizing

action of eddies, either in oligotrophic conditions (Dadou ef al., 1996 ; Flierl and
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Davis, 1993 ; McGillicuddy and Robinson, 1997 ; Smith et al., 1996 ; Spall, 1998)
or in more eutrophic systems (McGillicuddy et al., 1995 ; Moisan et al., 1996). On
the front space scale and wind burst time scale, the Ekman transport induced by the
wind can result in a lateral input of nutrients at the surface, and therefore in an
increase of productivity. For instance, productivity allowed by the first wind burst in
the high-frequency experiment is approximately 20 mmoleN m-2 (days 17 to 20, Fig.
11). Such an enhancement of productivity by Ekman transport of nutrients has also
been emphasized by Francks and Walstad (1997).

Primary production and export fluxes must be correctly understood and
evaluated, because they control total inorganic carbon content of the mixed layer,
which is directly in contact with the atmosphere, and thus influence the carbon
dioxide exchange between the ocean and the atmosphere (Longhurst and Harrison,
1989). One of the most remarkable manifestations of the seasonal variability in the
world’s oceans is the spring phytoplankton bloom in the North Atlantic (Esaias et
al., 1986). The greatest oceanic uptake of carbon dioxide happens during this bloom
period (Takahashi, 1993), and observations show that it is subject to strong
mesoscale and high-frequency variabilities (Watson ez al., 1991 ; Yoder ef al., 1993 ;
Marra, 1995 ; Williams, 1988) . The results of this study emphasize the importance
of small scale processes on the productivity and export budget during the bloom in
the MEDOC area, and their complex interactions. They can reasonably be
extrapolated to the North Atlantic, where winter mixing is also deep. The modelling
study of Oschlies and Gargon (1998) supports this extrapolation ; they estimate
mesoscale processes to account for 30% of productivity in the North Atlantic. Our
results, together with an increasing number of other studies, therefore question the
use of coarse resolution, climatological, biogeochemical models of the North
Atlantic (Drange, 1994 ; Fasham ez al., 1993 ; Sarmiento et al., 1993). We believe
that it is necessary to continue in the direction of this work in order to understand,
estimate and parameterize the effect, on the large scale, of small scale processes on

primary production and export.
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Table 1.

Atmospheric forcings used for the no flux, the warming, the wind and the high-frequency
experiments : penetrative solar radiation, non-solar heat budget and wind stress. See text

for more details.

Solar heat flux Non-solar heat flux Wind stress
no flux 150 W m-2 -150 W m-2 0
warming 150 Wm=2+ 2 W m-2d! -150 W m-2 0
wind 150 W m-2 -150 W m=2 0.15Pa
high frequency ECMWEF 1990 data (Fig. 1)
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Figure 1.

Daily solar heat flux, net heat flux and wind stress over the MEDOC area predicted by the
European Center for Medium Weather Forecast (ECMWEF) for February and March 1990
(thick black lines). The solar radiation shows a continuous increase during the period. Two
strong wind bursts (end of February and end of March) are associated with strong heat losses.
The superimposed thin lines show the monthly smoothing of these data. The two vertical
lines delimit the temporal window of the high-frequency experiment (Feb., 20 until March,
15, corresponding to days 8 to 33 of the experiment).
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Figure 2.
Time series of the surface density field (relatively to cg=28.0) for the no flux, the warming
and the wind experiments. Contour interval is 0.05 in units of cg. Only a zoom of the domain

is represented. The gray scale emphasizes the progressive warming of the surface waters in
the warming experiment.
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Figure 3.

Mixing-layer depth time series for the no flux, the warming and the wind experiments. The
mixing layer is defined as the surface layers where the vertical mixing coefficient is greater
than 10~ m’s™'. As this coefficient exhibits a sharp vertical variation at the bottom of the

mixing layer, this definition is quite insensitive to the minimum value chosen, as long as it is
reasonable (between 510 and 5.107° mzs_])
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Figure 4.

Surface phytoplankton concentration time series for the no flux, the warming and the wind
experiments. Note that the gray scale is not linear.
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Figure 5.

Average over the circular area centered in the center of the domain and of 100 km radius of
the 0-100 m cumulated primary production The spatial average is thus calculated over the
area that covers the convective site and the instabilities.



Figure 6.
Surface nutrient concentration time series for the no flux, the warming and the wind
experiments. The contour interval is 0.5 mmoleN m3. The dotted circles delimit the

instability area, over which diagnostics pictured in Figure 7 are averaged.
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Figure 7.

For the surface layer, nutrient concentration and biological and dynamical nutrient forcings
integrated with time, integrated over the area comprised between the two dotted circles
pictured in Figure 6. Time integrated biological forcings represent the amount of nutrient that
is locally taken up by the biology (“Biological” nutrients), while time integrated dynamical
forcings represent the amount of nutrients that is imported by dynamical processes
(“Dynamical” nutrients). They are compared to the total nutrient stock (“Nutrients™).



Figure 8.
a- Surface density time series (relatively to c9=28.0) for the high-frequency experiment.
Contour interval is 0.05 in units of og.

b- Density section (across y=150 km) time series for the high-frequency experiment. Contour
interval is 0.1 in units of og.
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Figure 9.

Mixing-layer depth time series for the high-frequency experiment. Contour

superimposed on the gray scale are 10, 20, 40, 60 and 80 m.
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Figure 10.

a- Surface phytoplankton concentration time series for the high-frequency experiment.
Contour intervals superimposed on the gray scale are 0.5 mmoleN m3.

b- Phytoplankton section (across y=150 km) time series for the high-frequency experiment.
Note that the gray scales are different on Figures 10a and 10b.
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Figure 11.

For the high-frequency experiment, average over the circular area centered in the center of the

domain and of 100km radius of 0-100m cumulated primary production, surface
phytoplankton and surface nutrients.



APPENDIX : THE NPZD BIOGEOCHEMICAL MODEL

The NPZD primary production model used in this study is a simplified version
of the BIOMELL biogeochemical model developed in a one-dimensional vertical
framework by Lévy et al. (1998c) for the northwestern Mediterranean seasonal cycle of
primary production and export fluxes. The simplification mostly concerns the
regeneration and the export pathways. It was made possible by the fact that the
simplified model was designed to study the winter and spring periods, when
regeneration and exports are weak.

The resulting NPZD model consists of four prognostic variables (instead of ten)
expressed in terms of their nitrogen content: nutrients (N), phytoplankton (P),
zooplankton (Z) and detritus (D). The biogeochemical source/sink budgets for each of

the variables are (with model parameters in Table 1) :

S(N)=-n,L LyP+u.Z+p,D (1)
S(P)=p ,L,LyP~G,— m,P )
S(2)=a,G, +a,G; ~n,Z-m.Z 3)
S(D)=(-a,)5, + (- a;)G,+m,P+m.Z - p,D- G - V;0.D 4)

The formulation for phytoplankton growth (i.e. primary production, p L,L\P)

takes into account nutrient and light limitations. Nutrient limitation has the Michaelis-
Menten kinetics (L = N/ N+ K, )). Light limitation has the Webb et al. (1974) type
(L =ym(1—e‘m’ K"“)), modulated by a parameterization of lagrangian production
inhibition in situations of deep mixing through a specific coefficient y . v, is set to 1
(no limitation) when the mixing layer is shallower than the euphotic layer. In such a
case, cells within the mixing layer are assumed to experience a mean photosynthetic
available radiation PAR over the mixing layer. When the mixing layer becomes deeper
than the euphotic layer, v decreases accordingly down to a threshold value of 0.1, and
PAR is taken as the averaged photosynthetic available radiation over the euphotic layer
(computed as the 1% incident light depth). This parameterization has been proposed by

André (1990) and yielded encouraging results in the one-dimensional study of Lévy et



al. (1998c) in the northwestern Mediterranean Sea. It is based on considerations on the
light experienced by the phytoplankton cells during their doubling time, which is a
purely lagrangian aspect.

Grazing of phytoplankton and detritus is formulated following Fasham et al.

(1990) -
P2
G g P 5
P=EC PI DK, + PP D ()
D2
G, = (6)

&~ (P+ D)X, + P> + D

The other biogeochemical interactions taken into account are phytoplankton
mortality, zooplankton mortality and zooplankton excretion (these last two processes
are inhibited when zooplankton concentration is below a given threshold), fecal pellet
production, detritus sedimentation and detritus remineralisation.

The photosynthetic available radiation (PAR) is derived from a light absorption
model. Only a fraction of the light field (43%) can be used for photosynthesis. Two
different light wavelength are considered. The absorption coefficients depend on the

local phytoplankton concentrations :

Ay =N, +A,,Chi" (7)
Ag =g +Ag,ChI® ®)
Chl =12 P R/ RpigRe cni )
PAR,(z =0)=PAR (z=0)=0,430,,/2 (10)
PAR (z)=PAR (z-Az)e ™ * (11)
PAR,(z)=PAR,(z-Az)e ™" * (12)
PAR(z) = PAR (z)+ PAR,(z) (13)

The equations for the biogeochemical model are solved for the uppermost twelve
model levels (~200 m). Below, the three biogenic compartments decay to nutrients,

with a decaying rate varying from one to twenty days.



Table 1 : parameters for the NPZD model

Nutrient half-saturation constant K, 0.5 mmole/m3
Phytoplankton maximal growth rate U, 2 d-1
Carbon/Chlorophyll ratio R 55 gC/gChl
Half-saturation constant for light Kpyp 33.33 W/m?
Phytoplankton mortality rate m, 0.03 d-!
Zooplakton maximal grazing rate g, 0.75 d-!
Half-saturation constant for grazing Ky 1 mmole/m?>
Assimilated fraction of phytoplankton a, 0.7

Assimilated fraction of detritus a, 0.5

Excretion rate i 0.1 d-!
Mortality rate m, 0.03 d-!
Threshold for zooplankton losses .4, 0.015 mmole/m3
Detritus sedimentation speed V; 5 m d-!

Detritus remineralisation rate Hg 0.09 d!

Water absorption in red Ao 0.225 m™
Water absorption in blue Ao 0.0232 m™
Pigments absorption in red A 0.037 s (mg Chi | m® )flr
A
lr

e 0.074 m™ (mgChl /m’ )_1g
0.629

Pigments absorption in blue

Power law for absorption in red
Power law for absorption in blue L 0.674
Contribution of Chlorophyll to absorbing pigments | R, 0.7
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