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  ozone and absorbing aerosol concentrations, both of them

increasing significantly after 1950.
For the IPSL-CM5A model, there is almost no differ-

ence between the low- and mid-resolution configurations

(LR and MR). The differences between those simulations
are within the range of internal variability. IPSL-CM5B-

LR exhibits a much smaller temperature increase after

1970 than IPSL-CM5A and this difference further increa-
ses in the future period (Sect. 5.1). The IPSL-CM5B-LR

model has a much smaller climate sensitivity than the other
model versions as will be shown in Sect. 6.1 and this is

probably the main reason for this smaller temperature

increase.
Compared to the observed temperature (Hadcrut3v

dataset, Jones et al. 1999; Hadcrut3v dataset, Brohan et al.

2006) over the period 1961–1990, the models have the
following biases on average: -0.7 K for IPSL-CM4,

-1.4 K for IPSL-CM5A-LR, -0.4 K for IPSL-CM5A-MR

and -0.6 K for IPSL-CM5B-LR. The geographical struc-
ture of the temperature bias shows common patterns for

IPSL-CM4, IPSL-CM5A-LR and IPSL-CM5A-MR. The

amplitude of these biases is weakest in IPSL-CM5A-MR
(Fig. 7), it is slightly stronger in IPSL-CM5A-LR and it is

significantly stronger in IPSL-CM4. In the Pacific and

Atlantic tropical oceans there is a systematic bias with the
eastern part of the ocean basins being too warm compared

to the western part, which is a common weakness of cou-

pled models. Over the Pacific, another common bias is a
cold tongue along the equator. In the mid latitudes there is

a systematic cold bias whose amplitude is weaker in IPSL-

CM5A-LR and MR than in IPSL-CM4. At high latitudes,
there is a warm bias over eastern Siberia, Alaska and

western Canada in the northern hemisphere and poleward

of 60!S in the southern hemisphere. The geographical
pattern of the temperature bias does not change signifi-

cantly on a seasonal scale.

The IPSL-CM5B-LR model displays a significantly
different bias pattern compared to other models. There is

a strong asymmetry between the two hemispheres with a

large cold bias over most of the northern hemisphere and a
large warm bias in the southern hemisphere, particularly

poleward of 60!S. In the tropics, this model exhibits an

east-west bias in the ocean basins but there is no cold
tongue over the equator. The temperatures in the tropics are

reasonable, which is not the case in the mid and high lat-

itude regions, probably due to an equatorward shift of the
mid-latitude jets. This shift, which is larger in IPSL-

CM5B-LR than in IPSL-CM5A-LR despite the same res-

olution (Hourdin et al. 2013b) is not yet understood. In the
Arctic region, IPSL-CM5B-LR is about 4!C colder than

IPSL-CM5A-LR in the AMIP simulations where the sea

surface temperature and the sea-ice fraction are prescribed.

Fig. 7 Geographical distribution of the bias in the annual mean air
surface temperature climatology (with respect to the period
1961–1990) simulated by, from top to bottom, IPSL-CM4, IPSL-
CM5A-LR, IPSL-CM5A-MR and IPSL-CM5B-LR models, com-
pared to estimate from observations (Jones et al. 1999). The global
mean difference with observations is removed in order to focus on the
bias structure. This global mean difference is -0.7K for IPSL-CM4,
-1.4K for IPSL-CM5A-LR, -0.4K for IPSL-CM5A-MR and -0.6K
for IPSL-CM5B-LR. For all models, the climatology is computed
using the first member of the historical run. The unit is K
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Intercomparison of CMIP5 pre-industrial control-run simulations
by Julie Deshayes (LPO CNRS - WHOI)
using Physical Analysis for a Gridded Ocean subpolar gyre intensity 

barotropic East Greenland Current

MOC at 42N in z coordinate

GFDL 27.92 ± 2.86 Sv
CCSM 40.53 ± 1.78 Sv
CNRM 26.10 ± 1.27 Sv
IPSL 16.27 ± 2.99 Sv
reanalysis 31.88 ± 3.26 Sv

GFDL 24.41 ± 1.96 Sv
CCSM 21.84 ± 1.12 Sv
CNRM 8.97 ± 1.00 Sv
IPSL 9.12 ± 1.10 Sv
reanalysis 15.93 ± 1.40 Sv

background colors:
Mean Absolute Dynamic 
Topography from AVISO, 

1993-2009

GFDL 20.67 ± 1.36 Sv
CCSM 11.97 ± 0.76 Sv
CNRM 12.22 ± 0.86 Sv
IPSL 8.60 ± 0.92 Sv
reanalysis 14.80 ± 0.55 Sv

MOC at 26N in z coordinate

models analyzed for 100 yr after 500 yr of spin-up
reanalysis 1992-2009 from MERCATOR GLORYS2V1
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A. Voldoire et al.: Climate model
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models for 300 years, corresponding to five cycles of the forcing
data. As the model solutions exhibit drift below the upper ocean,
this length of integration is clearly too short for investigations
involving deep ocean tracer properties that evolve on long diffusive
time scales. For such studies, longer integrations and/or detrending
of model data may be needed. In contrast, in our experience (as
documented in, e.g., Doney et al., 2007; Lohmann et al., 2009; Yea-
ger et al., 2012), 300-year integration lengths are sufficient for
studies involving, for example, AMOC, subtropical and subpolar
gyres, convection and deep water formation in the North Atlantic,
and upper ocean mean and variability.

To evaluate the degree of equilibrium achieved in the simula-
tions, we use the AMOC annual-mean maximum transport time

series at 26.5!N as our metric (Fig. 1). This latitude is chosen as a
representative latitude as we obtain qualitatively similar results
at several other latitudes – AMOC at 26.5!N will also be used for
comparisons with the RAPID observations (Rapid Climate Change
mooring data, Cunningham et al., 2007) later. Here, we seek to
determine the repeatability of the AMOC time series from one forc-
ing cycle to the next one for each model – except MRI-A because it
was run for only one forcing cycle. This is quantified in Fig. 2 by
considering root-mean-square (rms) differences and correlations
of the AMOC time series of Fig. 1 for each subsequent forcing cycle
pair. Specifically, for each model, we compute rms differences and
correlations between forcing cycles 2 and 1, 3 and 2, 4 and 3, and
finally 5 and 4. The rms measures the differences in the means,

Fig. 1. AMOC annual-mean maximum transport time series at 26.5!N for the entire 300-year integration length. The time series are smoothed using a five-point box car filter.
The repeating 60-year forcing cycle, corresponding to calendar years 1948–2007, is indicated by the dashed lines in each panel.

Fig. 2. Root-mean-square (rms) differences (top panels) and correlations (bottom panels) for the AMOC annual-mean maximum transport time series at 26.5!N between
consecutive forcing cycles. The first ten years of each cycle are excluded from the analysis to avoid large adjustments associated with the jump in forcing from 2007 back to
1948. The MRI-A data assimilation simulation is not included because it is integrated only for one 60-year cycle.
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data. As the model solutions exhibit drift below the upper ocean,
this length of integration is clearly too short for investigations
involving deep ocean tracer properties that evolve on long diffusive
time scales. For such studies, longer integrations and/or detrending
of model data may be needed. In contrast, in our experience (as
documented in, e.g., Doney et al., 2007; Lohmann et al., 2009; Yea-
ger et al., 2012), 300-year integration lengths are sufficient for
studies involving, for example, AMOC, subtropical and subpolar
gyres, convection and deep water formation in the North Atlantic,
and upper ocean mean and variability.

To evaluate the degree of equilibrium achieved in the simula-
tions, we use the AMOC annual-mean maximum transport time

series at 26.5!N as our metric (Fig. 1). This latitude is chosen as a
representative latitude as we obtain qualitatively similar results
at several other latitudes – AMOC at 26.5!N will also be used for
comparisons with the RAPID observations (Rapid Climate Change
mooring data, Cunningham et al., 2007) later. Here, we seek to
determine the repeatability of the AMOC time series from one forc-
ing cycle to the next one for each model – except MRI-A because it
was run for only one forcing cycle. This is quantified in Fig. 2 by
considering root-mean-square (rms) differences and correlations
of the AMOC time series of Fig. 1 for each subsequent forcing cycle
pair. Specifically, for each model, we compute rms differences and
correlations between forcing cycles 2 and 1, 3 and 2, 4 and 3, and
finally 5 and 4. The rms measures the differences in the means,

Fig. 1. AMOC annual-mean maximum transport time series at 26.5!N for the entire 300-year integration length. The time series are smoothed using a five-point box car filter.
The repeating 60-year forcing cycle, corresponding to calendar years 1948–2007, is indicated by the dashed lines in each panel.

Fig. 2. Root-mean-square (rms) differences (top panels) and correlations (bottom panels) for the AMOC annual-mean maximum transport time series at 26.5!N between
consecutive forcing cycles. The first ten years of each cycle are excluded from the analysis to avoid large adjustments associated with the jump in forcing from 2007 back to
1948. The MRI-A data assimilation simulation is not included because it is integrated only for one 60-year cycle.
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Fig. 4. Scatterplot for all the simulations of the mean summer
jet latitude versus the resolution in latitude. Circles are coupled
simulations, squares are imposed-SST simulations. The green
line marks the latitude of the observed (NCEP) jet.

The reasons for this behavior were explored by Gue-
mas and Codron (2011) using an idealized Held and Suarez
(1994) setup with the LMDZ4 dynamical core. They found
that the latitude shift could be attributed to a general in-
crease in wave activity, with larger eddy momentum fluxes
pushing the jet poleward, a behavior previously observed
by Held and Phillipps (1993) at lower resolutions. With
an increase of the resolution in longitude, the increase in
wave activity was accompanied by an increased tendency
for poleward propagation of the waves, which prevented a
jet shift. With the full GCM, the jet tends to also move
slightly poleward when increasing the resolution in longi-
tude, especially in coupled simulations. This change in the
model behavior may be linked to a warming of the Tropics
in the full GCM, possibly caused by the physical parame-
terizations (Hourdin et al. 2012).

According to figure 4, the simulations closest to ob-

servations are the high-resolution, imposed-SST ones with
142 points in latitude (red squares), which have almost the
same zonal-mean jet distribution as NCEP. A map of the
associated summer-mean zonal wind is shown on figure 2b:
is is indeed very close to the observed one. For comparison,
the winds from the CM4-96×71 simulation (open black cir-
cle on figure 4) are shown on figure 2c. They are clearly
different, with a jet that is too narrow and too strong at
200 hPa, and located at a lower latitude.

a. Jet variability

More statistics of the jet variability in the different sim-
ulations are shown on figure 5. The horizontal axis is in all
cases the mean latitude of the jet. The daily jet latitude is
used as a basic index, but a daily SAM index would yield
the same results: in all simulations as in observations, the
summer SAM represents to first order a shift of the jet
around its mean position (not shown).

The variance of the distribution (figure 5a) shows only
little spread around the observed value with no systematic
tendency (the vertical scale is the same for variance plots
in summer, winter and whole year). The skewness (figure
5b) is negative for the most equatorward jets (i.e. skewed
towards poleward positions), then increases towards the
observed value of zero when the jet moves poleward. This
could suggest the existence of a barrier against jet move-
ments deep into the subtropics. The mean speed of the
jet at 850-hPa, taken each day at its actual latitude, is
shown on figure 5c. It increases slightly when the jet moves
poleward, and is overestimated by 0.5m s−1 at the highest
resolutions.

The decorrelation timescale of jet movements is shown
on figure 5e. It was computed by fitting the lagged auto-
correlation function of the daily jet latitude with an expo-
nential over the first 10 days. The timescale decreases with
the jet latitude, converging towards the observed value as
observed by Kidston and Gerber (2010) and Barnes and
Hartmann (2010b). Note that the range of latitudes cov-
ered here is the same as for all the CMIP3 models they
used.

Only two simulations display a systematically lower timescale
than expected given their jet latitude: they are the coupled
simulations with a larger number of points in longitude
than in latitude (open circles). The reason for this behav-
ior is unclear, but a distinct feature of these simulations is
a very strong cold bias in the mid-latitude SSTs compared
to the tropical ones, which is reduced when the number
of points in latitude is larger (Hourdin et al, submitted).
Perhaps the strong subtropical SST gradient has an an-
choring effect which could prevent long excursions of the
jet (Sampe et al. 2007).

The monthly variance explained by the SAM (figure
5f) behaves exactly as the timescale of jet movements, de-
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Fig. 14 Winter sea ice thickness for the model (top), and winter and summer ice edges (bottom) for 

model and data (Gloersen and Campbell 1991). See Table 4 for global averages and Fig. 5 for statist-1255 

ics. 

 

Fig. 15 Salt transport (10
6
 kg s

-1
) by the gyre component for CTRL (red) and HiRes (green). See ap-

pendix 9.2 for the computation of the gyre component.  

CTRL	
  :	
  IPSL-­‐CM4	
  96x71	
  
HiRes	
  :	
  IPSL-­‐CM4	
  144x96	
  
	
  
Transport	
  de	
  sel	
  horizontaux	
  induit	
  
par	
  le	
  vent	
  augmente	
  

	
  -­‐>	
  l’AMOC	
  augmente	
  	
  

The combination of the cold bias at middle latitudes and
the warm bias in the tropics is associated to a stronger than

observed equator-to-poles SST gradient. The gradient is

improved with enhanced atmospheric resolution, suggest-
ing that increasing the resolution has corrected some cir-

culation errors. This differs from Hack et al. (2006a, b)

who find similar SST error patterns and magnitudes in
versions of the CCSM3 with atmospheric configurations

T42 and T85, respectively.

The large-scale characterics of precipitation (Fig. 9) in
CTRL are detailed by Braconnot et al. (2007a, b). They

are consistent with the temperature field. In January,
precipitation north of the equator in the eastern Pacific is

too sluggish, with even less precipitation in HiRes. The

double ITCZ (intertropical convergence zone) at 4!S is
present in both simulations, and is stronger in HiRes. The

structure of the South Pacific Convergence Zone is too

zonal in both simulations, penetrating too far toward the
east Pacific. In the Atlantic, ITCZ precipitations are too

weak in January, particularly over the Amazon. In July,

the ITCZ of CTRL is shifted southward compared to
observations. Its position is better represented in HiRes,

Fig. 7 Stream function of the
Atlantic meridional overturning.
Left CTRL, right HiRes. Isoline
every 2 Sv, and every 10 Sv
above 20 Sv

Fig. 8 a Difference between
CTRL simulated sea surface
temperature (annual mean) and
the climatology of Reynolds
(1988). Isolines are plotted
every 1!C. b Difference
between HiRes and CTRL SST.
Isolines are plotted every 0.5!C.
c Difference between CTRL
simulated sea surface salinity
(annual mean) and the PHC
(Steele et al. 2001) climatology.
Isolines are plotted every
0.5 PSU. d Salinity differences
between HiRes and CTRL.
Isolines are plotted every
0.25 PSU. See Table 4 for
global averages and Fig. 5 for
statistics
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ber) from wintertime (November to March) weather
regimes. We restrain Z500 fields to the North-Atlantic
domain, defined as 90⇥ W–30⇥ E/20-80⇥ N. For each
season, the computation of weather regimes of either a
reanalyzed or modeled 50-year Z500 field comprises two
major steps:

1. n centroids are obtained by applying a clustering al-
gorithm on the k first Empirical Orthogonal Func-
tions (EOFs, von Storch and Zwiers [2001]) of daily
Z500 anomalies. In our case we use the k-means
algorithm [Michelangeli et al., 1995] with n = 4
classes, after selecting k = 14 EOFs which carry at
least 80 % of variance. Anomalies are obtained by
removing the 50-year climatology of the raw Z500
field.

2. each day is placed in the class whose centroid is
the closest to the day’s Z500 anomaly in terms of
minimal Euclidean distance. In the end, each class
contains a distribution of daily Z500 anomalies, that
can be described at first order by its mean (hereafter
“class center”). Class centers and centroids gener-
ally di�er, because centroids are computed on the
first 14 principal components while centers are ob-
tained in the full N dimensional field.

This methodology has been used in a couple of recent
studies, including Cassou et al. [2005] and Cassou [2008]
from which the names of both summertime and win-
tertime weather regimes are picked for our study (see
Section 3.3).

Our approach to compare weather regimes from IPSL
experiments with reanalysis can be decomposed as fol-
lows:

1. we compute centroids for each experiment and re-
analysis, and thus obtain n = 4 centroids for each
experiment and each season;

2. we test whether reanalysis centroids can be identi-
fied with those obtained from IPSL experiments;

3. we classify each experiment and reanalysis among
reanalysis centroids taken as a common reference,
which is justified if the previous condition is verified;

4. we compare the main features of each regime be-
tween IPSL experiments and reanalysis, which is
relevant when using common centroids.

The performance of this approach is presented in Sec-
tion 3.3 and Section 3.4. We first start by investigating
the multi-modality issue in the atmospheric circulation,
by prior analyzing in the PDF of the position of the
jet stream in Section 3.2 based on the diagnostics per-
formed in Woollings et al. [2010].

3.2 Preferred positions of the jet stream

We compute the latitudinal position of the jet in the
North Atlantic by first zonally averaging the 850-hPa
zonal wind between 75⇥ W and 15⇥ E for each day. The
latitude of the jet is then taken as the center of the
latitude band where the wind speed is greater than the
maximum speed minus 1 m s�1. The 850-hPa level was
chosen as it is representative of the eddy-driven jet and
not influenced by the subtropical jet.

PDFs of daily jet latitudes in winter and summer
months are shown in Figure 1 for both reanalyses and
IPSL simulations, together with the 95%-confidence in-
terval for NCEP reanalysis, computed by a bootstrap
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ber) from wintertime (November to March) weather
regimes. We restrain Z500 fields to the North-Atlantic
domain, defined as 90⇥ W–30⇥ E/20-80⇥ N. For each
season, the computation of weather regimes of either a
reanalyzed or modeled 50-year Z500 field comprises two
major steps:

1. n centroids are obtained by applying a clustering al-
gorithm on the k first Empirical Orthogonal Func-
tions (EOFs, von Storch and Zwiers [2001]) of daily
Z500 anomalies. In our case we use the k-means
algorithm [Michelangeli et al., 1995] with n = 4
classes, after selecting k = 14 EOFs which carry at
least 80 % of variance. Anomalies are obtained by
removing the 50-year climatology of the raw Z500
field.

2. each day is placed in the class whose centroid is
the closest to the day’s Z500 anomaly in terms of
minimal Euclidean distance. In the end, each class
contains a distribution of daily Z500 anomalies, that
can be described at first order by its mean (hereafter
“class center”). Class centers and centroids gener-
ally di�er, because centroids are computed on the
first 14 principal components while centers are ob-
tained in the full N dimensional field.

This methodology has been used in a couple of recent
studies, including Cassou et al. [2005] and Cassou [2008]
from which the names of both summertime and win-
tertime weather regimes are picked for our study (see
Section 3.3).

Our approach to compare weather regimes from IPSL
experiments with reanalysis can be decomposed as fol-
lows:

1. we compute centroids for each experiment and re-
analysis, and thus obtain n = 4 centroids for each
experiment and each season;

2. we test whether reanalysis centroids can be identi-
fied with those obtained from IPSL experiments;

3. we classify each experiment and reanalysis among
reanalysis centroids taken as a common reference,
which is justified if the previous condition is verified;

4. we compare the main features of each regime be-
tween IPSL experiments and reanalysis, which is
relevant when using common centroids.

The performance of this approach is presented in Sec-
tion 3.3 and Section 3.4. We first start by investigating
the multi-modality issue in the atmospheric circulation,
by prior analyzing in the PDF of the position of the
jet stream in Section 3.2 based on the diagnostics per-
formed in Woollings et al. [2010].

3.2 Preferred positions of the jet stream

We compute the latitudinal position of the jet in the
North Atlantic by first zonally averaging the 850-hPa
zonal wind between 75⇥ W and 15⇥ E for each day. The
latitude of the jet is then taken as the center of the
latitude band where the wind speed is greater than the
maximum speed minus 1 m s�1. The 850-hPa level was
chosen as it is representative of the eddy-driven jet and
not influenced by the subtropical jet.

PDFs of daily jet latitudes in winter and summer
months are shown in Figure 1 for both reanalyses and
IPSL simulations, together with the 95%-confidence in-
terval for NCEP reanalysis, computed by a bootstrap
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Figure 1: (Upper panel) SST patterns Atlantic Multidecadal Oscillation (AMO) in K, corre-
sponding to a projection onto a normalized AMO index. (Lower panel) AMO index computed
as the area-weighted SST over North Atlantic (0N-60N and 75W-7.5E).
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sponding to a projection onto a normalized AMO index. (Lower panel) AMO index computed
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Figure 1: SST patterns for global warming (GW) and Atlantic Multidecadal Oscillation
(AMO).
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This last step closes the cycle responsible for the 20-year

variability in the subpolar North Atlantic domain in the
model. The whole cycle is summarized below.

3.3 Summary on the 20-year variability in the subpolar
North Atlantic and role of the AMOC

Figure 13 proposes a summary of the subpolar mechanism
giving rise to the 20-year timescale of the AMOC illus-

trated in Fig. 4b and c. It has been shown that a deceler-
ation of the fresh and cold EGC through the Denmark Strait

generates positive salinity and temperature anomalies in

the upper 200 m of the Labrador Sea which are maximum
around 3 years after the deceleration. These anomalies then

propagate along the subpolar gyre and reach the Nordic

Seas in about 7 years. As they pass over the convection
sites, the salinity anomalies favor deep convection. In the

Nordic Seas, the temperature anomalies also induce an

anomalous decrease of sea-ice extent which in turn triggers
a positive anomalous atmospheric temperature and a

cyclonic atmospheric circulation, associated to anomalous

southward wind stress along the eastern coast of Green-

land. This leads to an intensification of the EGC which in
turn generates negative salinity and temperature anomalies

in the Labrador Sea. Cross correlation analysis showed that

this whole mechanism lasts about 10 years. The negative
SSS and SST anomalies in the Labrador Sea then follow

the same path along the subpolar gyre , as described in

Sect. 3.1 of this part. This is the second part of a cycle
lasting 20 years.

The AMOC is thus not taking an active part in this
variability mechanism of the subpolar North Atlantic. It is

influenced by the cycle through deep convection anoma-

lies, mainly from the subpolar sites. We showed that an
enhancement of the AMOC is highly correlated in this

model with the northward heat transport (Fig. 4b). The

impact of this relationship does not appear in the 20-year
cycle analyzed here, further indicating that the effect of the

AMOC-induced heat transport on the North Atlantic con-

vection sites is not significant for their variability in this
model. Such an effect would have implied a negative

feedback of the AMOC on the convection sites, but this

Fig. 13 Schematic view of the
whole mechanism. We represent
the North Atlantic basin and
show the appearance of
temperature and salinity
anomalies in the Labrador Sea
(T’ and S’ in the red hexagon).
Estimated time lags are
indicated all along their
advection in the subpolar and
Nordic Seas, affecting the
convection sites along their
path. In the Nordic Seas is
represented the melting of sea
ice and the anomalous low
pressure system that modifies
the wind stress. This in turn
intensifies the EGC, leading to
tracers anomalies of the
opposite sign around 10 years
after their inception
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North Atlantic Deep Waters (NADW) at depth. Its maxi-

mum value is reached around 40!N and 1,000 m depth.
Probably because of the lack of deep convection in the

interior of the Labrador Sea, its mean value is only 10.3 Sv

(1 Sv = 106 m3/s), which is below the range inferred from
observational estimates (e.g. Ganachaud and Wunsch 2003;

Talley et al. 2003; Cunningham et al. 2007). The overflows

across the Denmark Strait are weak compared to observa-
tions, with only 2.2 Sv of water denser than 27.8 kg/m3

flowing southward. No dense southward flow is detected
across the Iceland-Scotland ridges. Observations-based

studies evaluate the total volume transport of overflow

water across the Greenland-Scotland ridge to about 6 Sv,
half of it passing through the Denmark Strait (Olsen et al.

2008).

Finally the barotropic ocean circulation is represented in
Fig. 3 for the North Atlantic region. The circulation is

characterized by a cyclonic subpolar gyre with a mean

intensity of 28 Sv and an anticyclonic subtropical gyre of
39 Sv. Again, these values are weaker than observations-

based estimates which are around 40 Sv for the subpolar

gyre (Hakkinen and Rhines 2004) and around 60 Sv for the
subtropical one (Greatbatch et al. 1991; Johns et al. 1995).

Investigating the causes of this bias is beyond the scope of

this study. Plausible candidates are, among others, the
weak AMOC, the coarse resolution which influences in

particular the Gulf Stream separation region (e.g. Hulburt

and Hogan 2000) and the location, intensity and variability
of major wind systems.

2.3 Multi-decadal variability of the AMOC

In order to investigate the temporal evolution of the

AMOC, we define a meridional overturning index (MOI)
as the maximum of the annual mean of the meridional

streamfunction between 10!N and 60!N and below 500 m.

This time series is characterized by a strong interannual
variability, with a standard deviation of 1.1 Sv (Fig. 4a) . A

20-year periodicity is revealed by the power spectrum in

Fig. 4b. The peak at 20 years is most prominent when
using log-linear representation which preserves variance

(dashed line). The significant (at the 95 % level) autocor-

relation at this time lag (Fig. 4c, black line) further con-
firms the 20-year periodicity. Note that here and in all the

following, significance of correlation is tested against a

two-sided student test, where the number of degrees of
freedom is estimated by taking into account the series

autocorrelation (Bretherton et al. 1992). Very similar

results are found using the first Principal Component of the
AMOC in annual mean to describe its temporal variations

(not shown). The 20-year peak is slightly stronger when

the AMOC intensity is defined as the maximum of the
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Fig. 4 a Time evolution of MOI (meridional overturning index,
computed as the maximum of the meridional stream function shown
in Fig. 3 over the North Atlantic, see details in Sect. 2.3) for the
studied period. b Spectrum of MOI, in log–log units (solid line) and in
log-linear units (variance preserving spectrum: dashed line). The
spectrum was calculated by the multi-taper method using four tapers.
The vertical line indicates the 95 % confidence interval. c Autocor-
relation of MOI (thick black), the maximum of meridional stream
function at 48N (thick blue) and cross correlations of the MOI with
the poleward oceanic heat transport taken at different latitudes (color
lines). The grey shading indicates 95 % confidence interval for zero
correlation. This level can in fact vary for each correlation curve of
the figure because of different effective numbers of degrees of
freedom [(Bretherton et al. 1992)]. Nevertheless, here, it is very
similar for all the correlations shown in the figure
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This last step closes the cycle responsible for the 20-year

variability in the subpolar North Atlantic domain in the
model. The whole cycle is summarized below.

3.3 Summary on the 20-year variability in the subpolar
North Atlantic and role of the AMOC

Figure 13 proposes a summary of the subpolar mechanism
giving rise to the 20-year timescale of the AMOC illus-

trated in Fig. 4b and c. It has been shown that a deceler-
ation of the fresh and cold EGC through the Denmark Strait

generates positive salinity and temperature anomalies in

the upper 200 m of the Labrador Sea which are maximum
around 3 years after the deceleration. These anomalies then

propagate along the subpolar gyre and reach the Nordic

Seas in about 7 years. As they pass over the convection
sites, the salinity anomalies favor deep convection. In the

Nordic Seas, the temperature anomalies also induce an

anomalous decrease of sea-ice extent which in turn triggers
a positive anomalous atmospheric temperature and a

cyclonic atmospheric circulation, associated to anomalous

southward wind stress along the eastern coast of Green-

land. This leads to an intensification of the EGC which in
turn generates negative salinity and temperature anomalies

in the Labrador Sea. Cross correlation analysis showed that

this whole mechanism lasts about 10 years. The negative
SSS and SST anomalies in the Labrador Sea then follow

the same path along the subpolar gyre , as described in

Sect. 3.1 of this part. This is the second part of a cycle
lasting 20 years.

The AMOC is thus not taking an active part in this
variability mechanism of the subpolar North Atlantic. It is

influenced by the cycle through deep convection anoma-

lies, mainly from the subpolar sites. We showed that an
enhancement of the AMOC is highly correlated in this

model with the northward heat transport (Fig. 4b). The

impact of this relationship does not appear in the 20-year
cycle analyzed here, further indicating that the effect of the

AMOC-induced heat transport on the North Atlantic con-

vection sites is not significant for their variability in this
model. Such an effect would have implied a negative

feedback of the AMOC on the convection sites, but this

Fig. 13 Schematic view of the
whole mechanism. We represent
the North Atlantic basin and
show the appearance of
temperature and salinity
anomalies in the Labrador Sea
(T’ and S’ in the red hexagon).
Estimated time lags are
indicated all along their
advection in the subpolar and
Nordic Seas, affecting the
convection sites along their
path. In the Nordic Seas is
represented the melting of sea
ice and the anomalous low
pressure system that modifies
the wind stress. This in turn
intensifies the EGC, leading to
tracers anomalies of the
opposite sign around 10 years
after their inception
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North Atlantic Deep Waters (NADW) at depth. Its maxi-

mum value is reached around 40!N and 1,000 m depth.
Probably because of the lack of deep convection in the

interior of the Labrador Sea, its mean value is only 10.3 Sv

(1 Sv = 106 m3/s), which is below the range inferred from
observational estimates (e.g. Ganachaud and Wunsch 2003;

Talley et al. 2003; Cunningham et al. 2007). The overflows

across the Denmark Strait are weak compared to observa-
tions, with only 2.2 Sv of water denser than 27.8 kg/m3

flowing southward. No dense southward flow is detected
across the Iceland-Scotland ridges. Observations-based

studies evaluate the total volume transport of overflow

water across the Greenland-Scotland ridge to about 6 Sv,
half of it passing through the Denmark Strait (Olsen et al.

2008).

Finally the barotropic ocean circulation is represented in
Fig. 3 for the North Atlantic region. The circulation is

characterized by a cyclonic subpolar gyre with a mean

intensity of 28 Sv and an anticyclonic subtropical gyre of
39 Sv. Again, these values are weaker than observations-

based estimates which are around 40 Sv for the subpolar

gyre (Hakkinen and Rhines 2004) and around 60 Sv for the
subtropical one (Greatbatch et al. 1991; Johns et al. 1995).

Investigating the causes of this bias is beyond the scope of

this study. Plausible candidates are, among others, the
weak AMOC, the coarse resolution which influences in

particular the Gulf Stream separation region (e.g. Hulburt

and Hogan 2000) and the location, intensity and variability
of major wind systems.

2.3 Multi-decadal variability of the AMOC

In order to investigate the temporal evolution of the

AMOC, we define a meridional overturning index (MOI)
as the maximum of the annual mean of the meridional

streamfunction between 10!N and 60!N and below 500 m.

This time series is characterized by a strong interannual
variability, with a standard deviation of 1.1 Sv (Fig. 4a) . A

20-year periodicity is revealed by the power spectrum in

Fig. 4b. The peak at 20 years is most prominent when
using log-linear representation which preserves variance

(dashed line). The significant (at the 95 % level) autocor-

relation at this time lag (Fig. 4c, black line) further con-
firms the 20-year periodicity. Note that here and in all the

following, significance of correlation is tested against a

two-sided student test, where the number of degrees of
freedom is estimated by taking into account the series

autocorrelation (Bretherton et al. 1992). Very similar

results are found using the first Principal Component of the
AMOC in annual mean to describe its temporal variations

(not shown). The 20-year peak is slightly stronger when

the AMOC intensity is defined as the maximum of the
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Fig. 4 a Time evolution of MOI (meridional overturning index,
computed as the maximum of the meridional stream function shown
in Fig. 3 over the North Atlantic, see details in Sect. 2.3) for the
studied period. b Spectrum of MOI, in log–log units (solid line) and in
log-linear units (variance preserving spectrum: dashed line). The
spectrum was calculated by the multi-taper method using four tapers.
The vertical line indicates the 95 % confidence interval. c Autocor-
relation of MOI (thick black), the maximum of meridional stream
function at 48N (thick blue) and cross correlations of the MOI with
the poleward oceanic heat transport taken at different latitudes (color
lines). The grey shading indicates 95 % confidence interval for zero
correlation. This level can in fact vary for each correlation curve of
the figure because of different effective numbers of degrees of
freedom [(Bretherton et al. 1992)]. Nevertheless, here, it is very
similar for all the correlations shown in the figure
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