Les biais des modèles IPSL-CM5 aux moyennes latitudes focus Atlantique Nord

G. Gastineau, J. Mignot, D. Swingedouw,J. Deshayes, F. Codron, B. L'Hévéder,J.B. Sallée, A. Germe et bien d'autres

Un biais froid tenace aux moyennes latitudes

Différence T2m en °K avec HadCRU (Dufresne et al. 2013)

Dans l'Atlantique Nord: un biais de salinité associé

ref: Levitus

La couche de mélange océanique en hiver

AMOC

(Atlantic Meridional Overturning Circulation)

80

Intercomparison of CMIP5 pre-industrial control-run simulations by Julie Deshayes (LPO CNRS - WHOI) using Physical Analysis for a Gridded Ocean

models analyzed for 100 yr after 500 yr of spin-up reanalysis 1992-2009 from MERCATOR GLORYS2V1

subpolar gyre intensity

barotropic East Greenland Current

reanalysis 14.80 ± 0.55 Sv

Etat Moyen: T-S dans la gyre subpolaire

Etat Moyen: épaisseur hivernale (mars) de glace de mer

IPSL-CM5A-LR

(Attention, les obs sont pour la période récente, les résultats de simulations pour la période préindustrielle)

IPSL-CM5A-MR

from Voldoire et al. 2013

Dans l'hémisphère sud: la couche de mélange océanique

IPSL-CM5A-LR

IPSL-CM5A-MR

Observations

Not enough convection in the Pacific

-> Upper ocean too stratified. Too large haline stratification (Associated with atmospheric jet problem in the Pacific?)

Le courant circumpolaire antarctique

ACC slightly too weak and too far north MR a bit better though

La glace de mer

Overturning Circulation at 30^oS

Too weak bottom water cell (not enough Abyssal production) Mode & Intermediate water flux ok, but form with surface water, not with CDW

Origine des biais?

- modélisation de la convection océanique?
- modélisation de la glace de mer
- Vent?
- Bilan d'eau douce en Atlantique Nord?

Modélisation de la convection océanique?

G. Danabasoglu et al./Ocean Modelling 73 (2014) 76–107

Modélisation de la glace de mer?

Danabasoglu et al 2014

Vent?

biais de la position latitudinale des jets atmosphérique

Historical from Barnes and Polvani (2013)

Impact sur l'ocean: illustration avec CM4

Lien avec la physique atmosphérique?

PDF of the latitude of the eddy driven jet in North Atlantic (Cattiaux et al., 2012)

	Hem. Sud	Atl. N	Pac. N
CM5A-LR	41.8°S	45.9°N	39.9°N
CM5B-LR	43.1°S	44.6°N	37.1°N

piControl from Barnes and Polvani (2013)

Bilan eau douce surface NA-Arctic

obs (ERA-40)	-104	-176	-280
Biais des modèles	E-P (mSv)	Runoff (mSv)	Total (mSv)
IPSL-CM5A-LR	-35.9	31.9	-4.0
IPSL-CM5A-MR	-39.9	20.9	-19.0
IPSL-CM5B	-69.6	16.2	-53.5

- Apport trop important d'eau douce par précipitation sur l'Atlantique
- Runoff trop fort dans les modèles

Conclusion

Biais persistants embêtants cote moyennes latitudes:

Décalages des structures vers l'Equateur

Conséquences majeurs pour la circulation océanique, la stratification, la glace de mer, etc.

Origine de ce biais?

- 1. Position latitudinale des vents
- 2. bilan de flux d'eau douce, sur l'Atlantique Nord
- 3. modèle de glace de mer

Diagnostiques importants:

- Pour l'ocean :
 - Transport chaleur, sel, masse, par bassin et par processus (gyres)
 - stratification à travers sections clés
- Pour l'atmosphère :
 - Vent zonal moyen sur Hémisphère Sud/Atlantique Nord/Pacifique Nord en daily ou/et calcul de son intensité et de sa position en latitude
 - Cellules de Hadley,
 - Bilan d'eau douce bassin par bassin.

Conséquences de différences inter-hémisphériques (from L'Hévéder and Codron)

anomalous Q-flux for NA experiment

1 W/m2 in Southern mid-latitudes, 6 W/m2 in NA experiment versus

Quelques mots sur la variabilité décennale

- AMO = low pass filtered SST with a cutoff frequency of 10-yr averaged over 0N-60N 75W-7.5
- Link with AMOC different.

IPO index –**HadISST 10** years LPF EOF2 (23%)

Amélioration des téléconnections tropiques/ extratropiques dans le Pacifique en MR avec la résolution

M. Khodri

Une variabilité préférentielle à 20 ans

Escudier et al, CD, 2013

Na et al

20-year coupled ocean-sea ice-atmosphere variability mode in the North Atlantic IPSL-CM5A-LR

Escudier et al, CD, 2013

AMOC variability in IPSL-CM5A-MR

- L'EOF1 de l'AMOC (pas montré) montre un fort impact de l'océan australe entre 30S et 20N.
- Cycle à 20 de l'AMOC présent en tant que EOF2 de l'AMOC, affectant principalement le gyre subpolaire.

EOF1 δO^{18} ice cores

Du 20 ans dans les obs. (et d'autres modèles ?)

Voir aussi Sicre et al.

Wen Na